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Abstract The Kurzweil-Henstock integral formalism is applied to establish the existence of solutions to the
linear integral equations of Volterra-type

x(t) +
∗
∫

[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (1)

where the functions are Banach-space valued. Special theorems on existence of solutions concerning the Lebesgue
integral setting are obtained. These sharpen earlier results.
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1 Introduction

In [2], we considered the abstract linear integral equation of Volterra-Henstock

x(t) + K

∫
[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (2)

as the limit of the following linear integral equations of Volterra-Bochner-Lebesgue

x(t) + L

∫
Xn ∩ [a, t]α(s)x(s) ds = f(t), t ∈ [a, b], n ∈ N, (3)

where {Xn}n∈N is a sequence of closed sets such that Xn ↑ [a, b] (i.e., Xn ⊂ Xn+1 ⊂ [a, b]
for every n ∈ N, and ∪Xn = [a, b]) and K

∫
and L

∫
denote respectively the Henstock and

the Bochner-Lebesgue integrals. On that occasion, we supposed that either α was a bounded
Henstock integrable function (possibly highly oscillating) and x, f were functions of bounded
variation (with discontinuities of the first kind), or α was a Henstock absolutely integrable
function (Lebesgue integrable in the real case) and x, f were continuous functions. Then the
limit of solutions of (3) was a solution of (2), provided the limit existed and either α was smaller
than 1 in absolute value or the integral of

∥∥α(·)∥∥ was smaller than 1.
In the present paper, we improve the result above by lifting this last hypothesis on α. We

transform (3) into the linear Stieltjes integral equation

x(t) + L

∫
Xn∩[a,t]

dα̃(s)x(s) ds = f(t), t ∈ [a, b], n ∈ N (4)
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where α̃ denotes the indefinite integral of α, by integration by parts and using a result on
the existence of solutions of each (4) due to [1]. Then the procedure of [2] is applied and the
limit of solutions of (3) satisfies equation (2). Special results are given when we consider the
Bochner-Lebesgue integral in (2).
Let [a, b] be a compact interval of the real line R.
Let X and Y be Banach spaces, L(X,Y ) be the Banach space of all linear continuous

functions from X to Y , L(X) = L(X,X) and X ′ = L(X,R). Let C
(
[a, b],X

)
and G

(
[a, b],X

)
be respectively the Banach spaces of continuous and of regulated functions from [a, b] to X
endowed with the supremum norm, ‖ · ‖∞.
Given a function α : [a, b] → L(X,Y ) and x ∈ X, consider the function αx : t ∈ [a, b] →

α(t)x ∈ Y . We say that α is weakly continuous (respectively weakly regulated) and we write
α ∈ Cσ

(
[a, b], L(X,Y )

) (
resp. α ∈ Gσ

(
[a, b], L(X,Y )

))
if for every x ∈ X, the function αx is

continuous (resp. αx is regulated). Let G−(
[a, b],X

)
be the set of all f ∈ G

(
[a, b],X

)
such

that f is left continuous and let Gσ−(
[a, b], L(X,Y )

)
be the set of all α ∈ Gσ

(
[a, b], L(X,Y )

)
such that for every x ∈ X, the function αx is left continuous. In an analogous way, we define
G+([a, b],X) and Gσ+

(
[a, b], L(X,Y )

)
for the right continuity.

Let d = (ti) be a division of [a, b] (i.e., a = t0 < t1 < · · · < tn = b). We write d = (ti) ∈ D[a,b]

and |d| = n. Given d = (ti) ∈ D[a,b] and functions α : [a, b] → L(X,Y ) and f : [a, b] → X, we
define

Vd(f) =
∑

i

∥∥f(ti)− f(ti−1)
∥∥,

SVd(α) = sup
{∥∥∥ ∑

i

[
α(ti)− α(ti−1)

]
yi

∥∥∥; yi ∈ Y, ‖yi‖ ≤ 1
}
.

Then V (f) = sup
{
Vd(f); d ∈ D[a,b]

}
is the variation of f and SV (α) = sup

{
SVd(α); d ∈

D[a,b]

}
is the semivariation of α. If V (f) < ∞, then f is of bounded variation and we

write f ∈ BV ([a, b],X). If SV (α) < ∞, then α is of bounded semivariation and we write
α ∈ SV

(
[a, b], L(X,Y )

)
. Clearly BV

(
[a, b], L(X,Y )

) ⊂ SV
(
[a, b], L(X,Y )

)
. Besides, SV

(
[a, b],

L(X,R)
)
= BV

(
[a, b],X ′) and, if X is of finite dimension, then SV

(
[a, b], L(X)

)
= BV

(
[a, b],

L(X)
)
. Under the norm given by the variation, the following spaces are complete:

BVa

(
[a, b],X

)
=

{
f ∈ BV

(
[a, b],X

)
; f(a) = 0

}
,

BV −
a

(
[a, b],X

)
=

{
f ∈ BVa

(
[a, b],X

)
; f is left continuous

}
.

For more information on the spaces above, see [5].

2 Kurzweil and Henstock Vector Integrals

2.1 Definitions

We say that d = (ξi, ti) is a tagged division of [a, b], if d = (ti) ∈ D[a,b] and ξi ∈ [ti−1, ti],
for i = 1, 2, · · · , |d|. Then TD[a,b] is the set of all tagged divisions of [a, b]. Given a function
δ : [a, b] →]0,∞[ (called a gauge of [a, b]), we say that d = (ξi, ti) ∈ TD[a,b] is δ-fine if
[ti−1, ti] ⊂

{
t ∈ [a, b]; |t− ξi| < δ(ξi)

}
, for i = 1, 2, · · · , |d|.

Let us consider functions f : [a, b] → X and α : [a, b] → L(X,Y ). We say that f is
Kurzweil α-integrable (we write f ∈ Kα([a, b],X)) and that I ∈ Y is its integral

(
we write

I = K
∫
[a,b]

dα(s)f(s)
)
if given ε > 0, there is a gauge δ of [a, b] such that for every δ-fine

d = (ξi, ti) ∈ TD[a,b],∥∥∥ ∑
i

[
α(ti)− α(ti−1)

]
f(ξi)− K

∫
[a,b]

dα(s)f(s)
∥∥∥ < ε.
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We denote the indefinite integral of f ∈ Kα([a, b],X) by f̃α
(
i.e., f̃α(t) = K

∫
[a,t]

dα(s) f(s),
for every t ∈ [a, b]). We say that f is Henstock α-integrable (

we write f ∈ Hα([a, b],X)
)
if there

exists a function Fα : [a, b]→ Y such that for every ε > 0, there is a gauge δ of [a, b] such that
for every δ-fine d = (ξi, ti) ∈ TD[a,b],∑

i

∥∥[
α(ti)− α(ti−1)

]
f(ξi)−

[
Fα(ti)− Fα(ti−1)

]∥∥ < ε.

In this case we set H
∫
[a,t]

dα(s)f(s) = Fα(t)− Fα(a).
Remark 1. When we consider only constant gauges δ in the definition of f ∈ Kα

(
[a, b],X

)
,

we obtain the Riemann-Stieltjes integral
∫
[a,b]

dα(s)f(s) and we write f ∈ Rα
(
[a, b],X

)
. If

α(t) = t, then instead of Kα
(
[a, b],X

)
and Hα

(
[a, b],X

)
we write simply K

(
[a, b],X

)
and

H
(
[a, b],X

)
respectively. We denote by K

∫
[a,b]

f(s) ds the Kurzweil integral of f ∈ K
(
[a, b],X

)
and by f̃ its indefinite integral

(
i.e., f̃(t) = K

∫
[a,t]

f(s) ds, for every t ∈ [a, b]). It is immedi-
ate that Hα

(
[a, b],X

) ⊂ Kα
(
[a, b],X

)
and, if X is of finite dimension, then Kα

(
[a, b],X

)
=

Hα
(
[a, b],X

)
.

The idea to consider semi-tagged divisions d = (ξi, ti) of [a, b] (i.e., (ti) is a division
of [a, b] and ξi ∈ [a, b] for every i, but it is not necessary that ξi ∈ [ti−1, ti] for any i) has
originated more restrictive integrals. This idea it is due to E.J. McShane[8], and when it is
applied to the definition of the Henstock vector integral, we obtain precisely the Bochner-
Lebesgue-Stieltjes integral with finite integral (see [6]). Given functions f : [a, b] → X and
α : [a, b] → L(X,Y ), we write f ∈ Lα

1

(
[a, b],X

)
if the Bochner-Lebesgue-Stieltjes integral

L
∫
[a,b]

dα(s)f(s) exists and is finite. Then, the inclusion Lα
1

(
[a, b],X

) ⊂ Hα
(
[a, b],X

)
holds. If

α(t) = t, we write simply L1

(
[a, b],X

)
, L

∫
[a,b]

f(s) ds and ‖f‖1 = L
∫
[a,b]

‖f(s)‖ ds and we have
L1

(
[a, b],X

) ⊂ H
(
[a, b],X

)
. Furthermore, if f ∈ H

(
[a, b],R

)
is positive, then f ∈ L1

(
[a, b],R).

2.2 Basic properties

For a proof of the following result, see [2, Theorem 1.2].
Proposition 1. Let α : [a, b]→ L(X,Y ) and f ∈ Kα

(
[a, b],X

)
.

(i) If α ∈ Gσ
(
[a, b], L(X,Y )

)
, then f̃α ∈ G

(
[a, b]Y

)
.

(ii) If α ∈ Gσ−(
[a, b], L(X,Y )

)
, then f̃α ∈ G−(

[a, b], Y
)
.

(iii) If α ∈ Gσ+
(
[a, b], L(X,Y )

)
, then f̃α ∈ G+

(
[a, b], Y

)
.

Remark 2. It is a consequence of Proposition 1 and its proof that if α ∈ Cσ
(
[a, b], L(X,Y )

)
and f ∈ Kα

(
[a, b],X

)
, then f̃α ∈ C

(
[a, b], Y

)
.

The next result can be found in [5] or in [2, Theorem 1.5].
Theorem 2. If either α ∈ SV

(
[a, b], L(X,Y )

)
and f ∈ C

(
[a, b],X

)
, or α ∈ C

(
[a, b], L(X,Y )

)
and f ∈ BV

(
[a, b],X

)
, then the Riemann-Stieltjes integrals

∫
[a,b]

dα(s)f(s) and
∫
[a,b]

α(s) df(s)
exist and the integration by parts formula holds:∫

[a,b]

dα(s)f(s) = α(b)f(b)− α(a)f(a)−
∫

[a,b]

α(s) df(s).

In [10, Theorem 15], Schwabik proved the following
Theorem 3. Let α ∈ SV

(
[a, b], L(X,Y )

) ∩ Gσ
(
[a, b], L(X,Y )

)
and f ∈ G

(
[a, b],X

)
. Then

f ∈ Kα
(
[a, b],X

)
.

The reader can find a proof for the next result in [6,9] or in [2, Theorem 1.9].
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Theorem 4. Let f ∈ H
(
[a, b],X

)
. Then f is absolutely integrable

(
i.e.,

∥∥f(·)∥∥ ∈ L1

(
[a, b],R

))
if and only if f̃ ∈ BV

(
[a, b],X

)
. In any case, ‖f‖1 = V (F ).

See [2, Theorem 1.10], for a proof of the following
Theorem 5. If α ∈ L1

(
[a, b], L(X,Y )

)
and f ∈ G

(
[a, b],X

)
, then αf ∈ L1

(
[a, b], Y

)
and

L
∫
[a,b]

α(s)f(s) ds =K
∫
[a,b]

dα̃(s)f(s).
Since C

(
[a, b],X

) ⊂ G
(
[a, b],X

)
and BV

(
[a, b],X

) ⊂ G
(
[a, b],X

)
then, in view of Theorem

2, it follows that
Corollary 6. Suppose α ∈ L1

(
[a, b], L(X,Y )

)
and either f ∈ C

(
[a, b],X

)
or f ∈ BV

(
[a, b],X

)
.

Then αf ∈ L1

(
[a, b], Y

)
and L

∫
[a,b]

α(s)f(s) ds =
∫
[a,b]

dα̃(s)f(s).
Theorem 7. Let α ∈ H

(
[a, b], L(X,Y )

)
and f : [a, b] → X. Then αf ∈ H

(
[a, b], Y

)
if one of

the following conditions is satisfied:
(i) f ∈ BV

(
[a, b],X

)
;

(ii) α is absolutely integrable and f ∈ C
(
[a, b],X

)
.

In any case, K
∫
[a,b]

α(s)f(s) ds =
∫
[a,b]

dα̃(s)f(s).
Theorem 7 (i) was proved in [7, Theorem 12.1 and Corollary 12.2]; for a proof of (ii), see

Theorem 4 above and [2, Theorem 1.8].
If α ∈ SV

(
[a, b], L(X)

) ∩Gσ−(
[a, b], L(X)

)
and f ∈ G−(

[a, b],X
)
, then the Kurzweil vector

integral K
∫
[a,t]

dα(s)f(s) exists for every t ∈ [a, b] (by Theorem 3) and ∥∥ K
∫
[a,t]

dα(s)f(s)
∥∥ ≤

SV (α) ‖f‖∞ (see [10, Proposition 10]). Thus, by Proposition 1, we can define an operator
Fα : G−(

[a, b],X
) → G−(

[a, b],X
)
by Fαf(t) = K

∫
[a,t]

dα(s)f(s), for every t ∈ [a, b]. Then the
next result can be easily proved.
Proposition 8. Suppose that α ∈ SV

(
[a, b], L(X)

)∩Gσ−(
[a, b], L(X)

)
, f ∈ G−([a, b],X) and

Fαf(t) = K
∫
[a,t]

dα(s)f(s), for every t ∈ [a, b]. Then Fα ∈ L
(
G−([a, b],X)

)
.

In an analogous way, applying Theorem 2 one can show that
Proposition 9. If α ∈ SV

(
[a, b], L(X)

) ∩ Cσ
(
[a, b], L(X)

)
, f ∈ C

(
[a, b],X

)
and Fαf(t) =∫

[a,t]
dα(s)f(s), for every t ∈ [a, b], then Fα ∈ L

(
C([a, b],X)

)
.

Proposition 10. Suppose that α ∈ H
(
[a, b], L(X)

)
is absolutely integrable, f ∈ BV −

a

(
[a, b],X

)
and F

α̃
f(t) =

∫
[a,t]

dα̃(s)f(s), for every t ∈ [a, b]. Then F
α̃
∈ L

(
BV −

a

(
[a, b],X

))
.

Proof. We will prove that F
α̃
f ∈ BV −

a

(
[a, b],X

)
, for f ∈ BV −

a

(
[a, b],X

)
. The linearity

and continuity of F
α̃
will be left to the reader. From the remark after Proposition 1, α̃ ∈

C
(
[a, b], L(X)

)
and F

α̃
f ∈ C

(
[a, b],X

)
. Besides, F

α̃
f(a) = 0. Therefore, it is sufficient to show

that F
α̃
f ∈ BV

(
[a, b],X

)
.

We assert that f ∈ H α̃
(
[a, b],X

)
. Indeed, since α ∈ H

(
[a, b], L(X)

)
and f ∈ BV

(
[a, b],X

)
,

it follows by Theorem 7 that αf ∈ H
(
[a, b],X

)
with K

∫
[a,b]

α(s)f(s) ds =
∫
[a,b]

dα̃(s)f(s). Let
ε > 0 and δ be a gauge of [a, b] such that for every δ -fine d = (ξi, ti) ∈ TD[a,b],∑

i

∥∥∥ K

∫
[ti−1,ti]

α(s) ds− α(ξi)[ti − ti−1]
∥∥∥ < ε

and ∑
i

∥∥∥ K

∫
[ti−1,ti]

α(s)f(s) ds− α(ξi)f(ξi)[ti − ti−1]
∥∥∥ < ε.

Then, ∑
i

∥∥∥ K

∫
[ti−1,ti]

dα̃(s)f(s)− [
α̃(ti)− α̃(ti−1)

]
f(ξi)

∥∥∥
=

∑
i

∥∥∥ K

∫
[ti−1,ti]

α(s)f(s) ds− [
α̃(ti)− α̃(ti−1)

]
f(ξi)

∥∥∥



Linear Volterra Integral Equations 557

≤
∑

i

∥∥∥ K

∫
[ti−1,ti]

α(s)f(s) ds− α(ξi)f(ξi)[ti − ti−1]
∥∥∥

+
∑

i

∥∥α(ξi)f(ξi)[ti − ti−1]−
[
α̃(ti)− α̃(ti−1)

]
f(ξi)

∥∥
<ε+

∑
i

∥∥∥α(ξi)[ti − ti−1]− K

∫
[ti−1,ti]

α(s) ds
∥∥∥ ‖f‖∞ < ε+ ε‖f‖∞

and f ∈ H α̃
(
[a, b],X

)
.

Now, given ε > 0 and the gauge δ of [a, b] from the definition of f ∈ H α̃
(
[a, b],X

)
, let

d = (ξi, ti) ∈ TD[a,b] be δ-fine. Hence,

∑
i

∥∥F
α̃
f(ti)− F

α̃
f(ti−1)

∥∥ =∑
i

∥∥∥ K

∫
[ti−1,ti]

dα̃(s)f(s)
∥∥∥

≤
∑

i

∥∥∥ K

∫
[ti−1,ti]

dα̃(s)f(s)− [
α̃(ti)− α̃(ti−1)

]
f(ξi)

∥∥∥
+

∑
i

∥∥[
α̃(ti)− α̃(ti−1)

]
f(ξi)

∥∥ < ε+ V (α̃)‖f‖∞,

which implies that F
α̃
f ∈ BV

(
[a, b],X

)
, once V (α̃) <∞ (Theorem 4).

3 Linear Volterra-Stieltjes Integral Equations

The nest result can be found in [1, Theorem 3.2].
Theorem 11 (Barbanti). Given α ∈ SV

(
[a, b], L(X)

) ∩ Gσ−(
[a, b], L(X)

)
, consider the fol-

lowing linear integral equation of Volterra-Kurzweil-Stieltjes

x(t) + K

∫
[a,t]

dα(s)x(s) = f(t), t ∈ [a, b], (5)

where x, f ∈ G−(
[a, b],X

)
. If (I + Fα) ∈ L

(
G−([a, b],X)

)
is a Fredholm operator, where

Fαf(t) = K
∫
[a,t]

dα(s)f(s), t ∈ [a, b], and I is the identity operator, then given f ∈ G−(
[a, b],X

)
,

there exists x ∈ G−(
[a, b],X

)
satisfying equation (5).

Owing to Proposition 9, following the ideas of Barbanti[1], one can prove Theorem 12 below.
Theorem 12. Given α ∈ SV

(
[a, b], L(X)

) ∩ Cσ
(
[a, b], L(X)

)
, consider the following linear

integral equation of Volterra-Stieltjes

x(t) +
∫

[a,t]

dα(s)x(s) = f(t), t ∈ [a, b], (6)

where x, f ∈ C
(
[a, b],X

)
. If (I +Fα) ∈ L

(
C([a, b],X)

)
is a Fredholm operator, where Fαf(t) =∫

[a,t]
dα(s)f(s), for every t ∈ [a, b], and I is the identity operator, then given f ∈ C

(
[a, b],X

)
,

there exists x ∈ C
(
[a, b],X

)
satisfying equation (6).

Theorem 13. Given α ∈ H
(
[a, b], L(X)

)
absolutely integrable, consider the following linear

integral equation of Volterra-Stieltjes

x(t) +
∫

[a,t]

dα̃(s)x(s) = f(t), t ∈ [a, b], (7)
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where x, f ∈ BV −
a

(
[a, b],X

)
. If (I + F

α̃
) ∈ L

(
BV −

a ([a, b],X)
)

is a Fredholm operator, where
F

α̃
f(t) =

∫
[a,t]

dα̃(s)f(s), for every t ∈ [a, b], and I is the identity operator, then given f ∈
BV −

a

(
[a, b],X

)
, there exists x ∈ BV −

a

(
[a, b],X

)
satisfying equation (7).

Proof. By the Remark after Proposition 1 and by Theorem 4, α̃ ∈ BV
(
[a, b], L(X)

)∩Cσ
(
[a, b],

L(X)
)
. Then by Proposition 10, (I+F

α̃
) ∈ L

(
BV −

a ([a, b],X)
)
. The rest of the proof follows the

steps of [1, Theorem 2.3] noticing that BV
(
[a, b], L(X)

) ⊂ SV
(
[a, b], L(X)

)
, BV −

a

(
[a, b],X

) ⊂
Ga([a, b],X) and BV −

a

(
[a, b],X

)
is a Banach space.

Remark 3. The important aspect of Theorems 11–13 is that each integral equation can be seen
as the limit of discrete systems which means that one can study the properties of such equations
through the transfer of the properties of the corresponding discrete systems (see [1]).

4 Linear Volterra Integral Equations

The results of the present section are part of [3].

4.1 Linear Volterra-Bochner-Lebesgue Integral Equations

We consider the next linear integral equation of Volterra in the sense of the Bochner-Lebesgue
integral

x(t) + L

∫
[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (8)

in the following cases:
(a) α ∈ L∞

(
[a, b], L(X)

)
and x, f ∈ G−(

[a, b],X
)
;

(b) α ∈ L1

(
[a, b], L(X)

)
and x, f ∈ C

(
[a, b],X

)
;

(c) α ∈ L1

(
[a, b], L(X)

)
and x, f ∈ BV −

a

(
[a, b],X

)
.

In each case, it follows from either Theorem 5 or its Corollary that equation (8) is equivalent
to the following equation

x(t) + ∗
∫

[a,t]

dα̃(s)x(s) = f(t), t ∈ [a, b], (9)

where ∗∫ denotes either the Kurzweil or the Riemann integral and α̃ is the indefinite integral
of α. We obtain the results for equation (8) by applying one of the results from the previous
section to equation (9).
Theorem 14. Let ∗∫ denote either the Kurzweil or the Riemann integral and let I

(
[a, b],X

)
de-

note one of the spaces G−(
[a, b],X

)
, C

(
[a, b],X

)
or BV −

a

(
[a, b],X

)
. Given α ∈ L1

(
[a, b], L(X)

)
,

consider equation (8), where x, f ∈ I
(
[a, b],X

)
. If (I + F

α̃
) ∈ L

(
I([a, b],X)

)
is a Fredholm op-

erator, where F
α̃
f(t) = ∗∫

[a,t]
dα̃(s)f(s), t ∈ [a, b], and I is the identity operator, then given

f ∈ I
(
[a, b],X

)
, there exists x ∈ I

(
[a, b],X

)
satisfying (8).

Proof. We prove the case when I
(
[a, b],X

)
= G−(

[a, b],X
)
. By Theorem 5, (8) is equivalent

to the Volterra-Kurzweil-Stieltjes linear integral equation (5). By the remark after Proposition
1, α̃ ∈ C

(
[a, b], L(X)

)
. Then, since £1

(
[a, b],L(X )

) ⊂ H
(
[a, b],L(X )

)
, α̃ ∈ BV

(
[a, b],L(X )

)
(Theorem 4), and the result follows by Theorem 11. The other cases follow in an analogous way
using the Corollary after Theorem 5 and one of the Theorems 12 or 13.

4.2 Linear Volterra-Henstock Integral Equations

We now consider the linear integral equation of Volterra in the sense of the Henstock integral

x(t) + K

∫
[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (10)



Linear Volterra Integral Equations 559

in the following cases:
(a) α ∈ H

(
[a, b], L(X)

)
is bounded and x, f ∈ BV −

a

(
[a, b],X

)
;

(b) α ∈ H
(
[a, b], L(X)

)
is absolutely integrable and x, f ∈ C([a, b],X).

As we did in [2], we establish the results for equation (10) through the analysis of a sequence
of equations of type (8). And this is done by means of
Lemma 15[4]. If f ∈ H

(
[a, b],X

)
, then there exists a sequence of closed sets {Xn}n∈N such

that Xn ↑ [a, b] (i.e., Xn ⊂ Xn+1 ⊂ [a, b] for every n ∈ N, and ∪Xn = [a, b]) and f ∈ L1(Xn,X),
for every n ∈ N. Furthermore,

lim
n→∞

L

∫
Xn∩[a,t]

f(s) ds = K

∫
[a,t]

f(s) ds

uniformly for every t ∈ [a, b].
The above result was proved originally for X = R. But with obvious adaptations, it also

holds for the case when X is a Banach space.
Theorem 16. Suppose that α ∈ H

(
[a, b], L(X)

)
is bounded (respectively α ∈ H

(
[a, b], L(X)

)
is

absolutely integrable). Consider equation (10), the linear integral equations of Volterra-Bochner-
Lebesgue obtained through Lemma 15

x(t) + L

∫
[a,t]

χXn(s)α(s)x(s) ds = f(t), t ∈ [a, b], n ∈ N, (11)

and the operator T : BV −
a

(
[a, b],X

) → BV −
a

(
[a, b],X

) (
respectively T : C

(
[a, b],X

) → C
(
[a, b],X

))
defined by

(Tx)(t) = f(t)− K

∫
[a,t]

α(s)x(s) ds, t ∈ [a, b],

where x, f ∈ BV −
a

(
[a, b],X

)(
resp. x, f ∈ C

(
[a, b],X

))
. If (I + F

α̃n
) ∈ L

(
BV −

a ([a, b],X)
)(

resp. (I + F
α̃n
) ∈ L

(
C([a, b],X)

))
is a Fredholm operator, where α̃n(t) = L

∫
[a,t]

χXn(s)α(s) ds
and F

α̃n
f(t) =

∫
[a,t]

dα̃n(s)f(s), t ∈ [a, b], and I is the identity operator, then for every
f ∈ BV −

a

(
[a, b],X

) (
resp. f ∈ C

(
[a, b],X

))
and n ∈ N, equation (11) admits a solution

xn ∈ BV −
a

(
[a, b],X

) (
resp. xn ∈ C

(
[a, b],X

))
. Suppose in addition that one of the following

conditions is satisfied:
(i) {xn}n∈N has a convergent subsequence xnk

→ x0 ∈ BV −
a

(
[a, b],X

) (
resp. x0 ∈

C
(
[a, b],X

))
;

(ii) α is bounded and Tm is a contraction for some m > 1, where Tm is the composition of
T m times.
If (i) holds, then x0 is a solution of (10). If (ii) holds, then there exists x = lim

n
xn, x ∈

BV −
a

(
[a, b],X

) (
resp. x ∈ C

(
[a, b],X

))
, such that (10) is fulfilled.

Proof. For each n ∈ N, we consider the continuous mapping Tn : BV −
a

(
[a, b],X

) → BV −
a

(
[a, b],X

)(
resp. Tn : C

(
[a, b],X

) → C
(
[a, b],X

))
given by

(Tnx)(t) = f(t)− L

∫
[a,t]

χXn(s)α(s)x(s) ds, t ∈ [a, b].

By Theorem 14, each equation (11) admits a solution xn ∈ BV −
a

(
[a, b],X

) (
resp. xn ∈

C
(
[a, b],X

)
). The rest of the demonstration follows the steps of [2, Theorem 2.4] which uses

Lemma 15 and a Fixed Point Theorem for sequences of mappings.
When we take α ∈ L1

(
[a, b], L(X)

)
in Theorem 16, we use the fact that ‖α‖1 < ∞ instead

of α bounded (i.e., ‖α‖∞ < ∞). In this case, α̃ ∈ BV
(
[a, b], L(X)

)
(see Theorem 4) and there

is a sequence of sets {Xn}n∈N such that each Xn is the finite union of closed nonoverlapping
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intervals, Xn ↑ [a, b], and α ∈ L1

(
Xn, L(X)

)
, for every n ∈ N (see [2], the comments after

Theorem 3.1). Under these considerations we have
Theorem 17. Let α ∈ L1

(
[a, b], L(X)

)
and I

(
[a, b],X

)
denote one of the spaces C

(
[a, b],X

)
or BV −

a

(
[a, b],X

)
. Consider the linear integral equations of Volterra-Bochner-Lebesgue (8) and

(11) and T : I
(
[a, b],X

) → I
(
[a, b],X

)
given by

(Tx)(t) = f(t)− L

∫
[a,t]

α(s)x(s) ds, t ∈ [a, b],

where x, f ∈ I
(
[a, b],X

)
and {Xn}n∈N is a sequence of sets as in the previous paragraph. If

(I + F
α̃n
) ∈ L

(
I([a, b],X)

)
is a Fredholm operator, where α̃n(t) = L

∫
[a,t]

χXn(s)α(s) ds and
F

α̃n
f(t) =

∫
[a,t]

dα̃n(s)f(s), t ∈ [a, b], and I is the identity operator, then given n ∈ N and
f ∈ I

(
[a, b],X

)
, equation (11) admits a solution xn ∈ I

(
[a, b],X

)
. Suppose in addition that one

of the following conditions is satisfied:
(i) {xn}n∈N has a convergent subsequence xnk

→ x0 ∈ I
(
[a, b],X

)
;

(ii) Tm is a contraction for some m > 1, where Tm is the composition of T m times.
If (i) holds, then x0 is a solution of (8). If (ii) holds, then there exists x = lim

n
xn ∈ I

(
[a, b],X

)
satisfying (8).
The proof of Theorem 17 is analogous to the proof of Theorem 16, replacing the integral of

Henstock by the Bochner-Lebesgue’s.
Remark 4. When X = R, then α ∈ H

(
[a, b], L(R)

)
absolutely integrable belongs to L1

(
[a, b],

L(R)
)
. Hence equation (10) with x, f ∈ C

(
[a, b],X

)
coincides with equation (8).

Remark 5. If, for instance, the composition of (F
α̃n
) k times, (F

α̃n
)k, is a compact operator

for some positive integer k, then (I+F
α̃n
) (from either Theorem 16 or Theorem 17) is a compact

operator (see [9]).
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