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STABILITY FOR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

M. Federson1 and Š. Schwabik2 UDC 517.9

It is known that retarded functional differential equations can be regarded as Banach-space-valued gen-
eralized ordinary differential equations (GODEs). In this paper, some stability concepts for retarded
functional differential equations are introduced and they are discussed using known stability results for
GODEs. Then the equivalence of the different concepts of stabilities considered here are proved and con-
verse Lyapunov theorems for a very wide class of retarded functional differential equations are obtained
by means of the correspondence of this class of equations with GODEs.

Notation

Let X be a Banach space and let I ⊂ R be an interval of the real line.
We denote by G(I, X) the space of locally regulated functions f : I → X, i.e., for every compact interval

[a, b] ⊂ I, the lateral limits f(t+) = limρ→0+ f(t + ρ), t ∈ [a, b), and f(t−) = limρ→0− f(t + ρ), t ∈ (a, b],
exist and are finite. If I = [a, b], we write G([a, b], X), which is a Banach space when endowed with the usual
supremum norm. In G(I, X), we consider the topology of locally uniform convergence. By G−(I, X), we mean
the subspace of G(I,X) of left continuous functions for which f(t−) = limρ→0− f(t + ρ) = f(t), t ∈ I,

except for the left endpoint of I.

We denote by BV (I, X) the space of functions f : I → X that are locally of bounded variation, i.e., for
every compact interval [a, b] ⊂ I, the restriction f

∣∣
[a,b]

of f to [a, b] is of bounded variation. In BV ([a, b], X),

we consider the variation norm given by ‖f‖ = ‖f(a)‖+ varbaf, where varbaf stands for the variation of f in the
interval [a, b]. Then BV ([a, b], X) is a Banach space and BV ([a, b], X) ⊂ G([a, b], X). If f ∈ BV (I, X) is
also left continuous (f ∈ BV (I,X) ∩ G−(I, X)), we write f ∈ BV −(I, X).

We write C(I, X) to denote the space of continuous functions f : I → X. We consider the Banach space
C([a, b], X) equipped with the usual supremum norm, and in C(I,X) we consider the topology of locally uniform
convergence.

It is clear that C(I, X) ⊂ G−(I,X) and BV −(I,X) ⊂ G−(I, X).
To simplify our considerations, we restrict ourselves to the case of left continuous functions everywhere when

some discontinuities can occur.

1. Retarded Functional Differential Equations

Let us consider the initial-value problem for a retarded functional differential equation:

ẏ(t) = f(yt, t),

yt0 = φ,

(1.1)
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where φ ∈ G−(
[−r, 0], Rn

)
, r ≥ 0, and f(φ, t) maps an open subset Ω of G−([−r, 0], Rn)× [t0, +∞) to R

n.

Given a function y : [t0 − r, +∞) → R
n, we consider yt : [−r, 0] → R

n defined, as usual, by

yt (θ) = y (t + θ) , θ ∈ [−r, 0], t ∈ [t0, +∞).

Let us recall the concept of a solution of problem (1.1).

Definition 1.1. Let σ > 0. A function y ∈ G−([t0 − r, t0 + σ], Rn) such that (yt, t) ∈ G−(
[−r, 0], Rn

) ×
[t0, t0 + σ] for all t ∈ [t0, t0 + σ], yt0 = φ, and

ẏ(t) = f (yt, t)

for almost all t ∈ [t0, t0 + σ] is called a (local) solution of (1.1) in [t0, t0 + σ]
(
or sometimes also in

[t0 − r, t0 + σ]
)

with initial condition (φ, t0) .

System (1.1) is known to be equivalent to the “integral” equation

y(t) = y(t0) +

t∫
t0

f (ys, s) ds, t ∈ [t0, +∞),

yt0 = φ,

(1.2)

when the integral exists in the Lebesgue sense (cf. [1]). In fact, we will use (1.2) for the concept of the initial-value
problem (1.1). This makes it clear that if a solution y is defined on some interval [t0, t0 +σ] with σ > 0, then y,

being an indefinite integral of a Lebesgue integrable function, is necessarily absolutely continuous on [t0, t0 + σ](
we write y ∈ AC([t0, t0 + σ], Rn)

)
.

Let G1 ⊂ G−(
[t0 − r, +∞), Rn) with the following property: if y = y(t), t ∈ [t0 − r, +∞), is an element

of G1 and t̄ ∈ [t0 − r, +∞), then ȳ given by

ȳ(t) =

⎧⎨
⎩

y(t), t0 − r ≤ t ≤ t̄,

y (t̄) , t̄ < t < +∞,

also belongs to G1.

Let L1(I, X) denote the space of locally Bochner integrable functions f : I → X integrable in every compact
of I, where I ⊂ R is an interval and X is a Banach space. If X is finite-dimensional, then we have the Lebesgue
integral in mind.

Let | · | be a norm in R
n.

We consider f(φ, t) : G−(
[−r, 0], Rn

) × [t0, +∞) → R
n, the right-hand side of the differential equation in

(1.1) such that the mapping t 
→ f (yt, t) belongs to L1

(
[t0,+∞), R

n
)

for y ∈ G1 and the following conditions
are satisfied:

(A) there is M ∈ L1

(
[t0,+∞), R

)
such that, for all x ∈ G1 and u1, u2 ∈ [t0,+∞),

∣∣∣∣∣∣
u2∫

u1

f (xs, s) ds

∣∣∣∣∣∣ ≤
u2∫

u1

M(s)ds;
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(B) there is L ∈ L1

(
[t0, +∞), R

)
such that, for all x, y ∈ G1 and u1, u2 ∈ [t0,+∞),

∣∣∣∣∣∣
u2∫

u1

[f (xs, s) − f (ys, s)] ds

∣∣∣∣∣∣ ≤
u2∫

u1

L(s) ‖xs − ys‖ ds;

the norm on the right-hand side is the norm in G−(
[−r, 0], Rn

)
given by ‖φ‖ = supt∈[−r,0] |φ(t)| for

φ ∈ G−(
[−r, 0], Rn

)
.

Of course, the functions M and L above depend on the choice of t0.

If f(0, t) = 0 for every t ∈ R, then y ≡ 0 is a solution of (1.1). The next definitions concern stability
concepts for the solution y ≡ 0 of (1.1). The following three definitions are the classical definitions for Lya-
punov stability, uniform (Lyapunov) stability, and uniform asymptotic stability of the trivial solution of (1.1) (see,
e.g., [1]):

Definition 1.2. The trivial solution of system (1.1) is called (Lyapunov) stable if, for every ε > 0, there
exists δ = δ(ε, t0) > 0 such that if φ ∈ G− ([−r, 0], Rn) and y : [γ, v] → R

n with [γ, v] ⊂ [t0 − r, +∞) and
[γ, v] � t0 is a solution of (1.1) such that yt0 = φ and

‖φ‖ < δ,

then ∥∥yt(t0, φ)
∥∥ < ε, t ∈ [t0, v].

Definition 1.3. The trivial solution of system (1.1) is called uniformly stable if the number δ in Definition 1.2
is independent of t0.

Definition 1.4. The solution y ≡ 0 of (1.1) is called uniformly asymptotically stable if there exists δ0 > 0
and, for every ε > 0, there exists T = T (ε, δ0) ≥ 0 such that if φ ∈ G− ([−r, 0], Rn) and y : [γ, v] → R

n with
[γ, v] ⊂ [t0 − r, +∞) and [γ, v] � t0 is a solution of (1.1) such that yt0 = φ and

‖φ‖ < δ0,

then ∥∥yt(t0, φ)
∥∥ < ε, t ∈ [γ, v] ∩ [γ + T, +∞).

The next definition of stability of the solution y ≡ 0 of (1.1) is borrowed from [2].

Definition 1.5. The solution y ≡ 0 of (1.1) is said to be integrally stable if, for every ε > 0, there is

δ = δ(ε) > 0 such that if φ ∈ G− ([−r, 0], Rn) , ‖φ‖ < δ, and p ∈ L1([t0, t1], Rn) with
∫ t1

t0

∣∣p(s)
∣∣ds < δ,

then ∣∣y(t; t0, φ)
∣∣ < ε for every t ∈ [t0, t1],
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where y(t; t0, φ) is a solution of the perturbed equation

ẏ(t) = f (yt, t) + p(t),

yt0 = φ.

(1.3)

The solution of Eq. (1.3) has to be interpreted as a solution of the “integral” equation

y(t) = y(t0) +

t∫
t0

f (ys, s) ds +

t∫
t0

p(s)ds,

yt0 = φ,

(1.4)

where the integral is considered in the Lebesgue sense. The solution of (1.3), when it exists, is absolutely continuous
on [t0, t1]

(
i.e., y(·; t0, φ) ∈ AC

(
[t0, t1], Rn)

)
.

We now introduce a concept of stability of the trivial solution of (1.1) that generalizes Definition 1.5 and will
be essential to our purposes.

Definition 1.6. The solution y ≡ 0 of (1.1) is said to be variationally stable if, for every ε > 0, there is a
δ = δ(ε) > 0 such that if φ ∈ G−(

[−r, 0], Rn
)
, ‖φ‖ < δ, and P ∈ BV −(

[t0, t1], Rn
)

with vart1t0P < δ, then

∣∣y(t; t0, φ)
∣∣ < ε for every t ∈ [t0, t1],

where y(t; t0, φ) is a solution of

y(t) = y(t0) +

t∫
t0

f (ys, s) ds + P (t) − P (t0), t ∈ [t0, t1],

yt0 = φ.

(1.5)

It can be seen immediately that the solution y of (1.5) is of bounded variation and left continuous, i.e.,
y ∈ BV −(

[t0, t1], Rn
) ⊂ G−(

[t0, t1], Rn
)
.

Note that (1.4) is a particular case of (1.5) for P (t) =
∫ t

t0

p(s)ds, t ≥ t0. If p ∈ L1

(
[t0, t1], Rn

)
, then we

have P ∈ AC([t0, t1], Rn) ⊂ BV −(
[t0, t1], Rn

)
, the derivative Ṗ (s) =

dP

ds
exists almost everywhere in [t0, t1],

and

vart1t0P =

t1∫
t0

∣∣Ṗ (s)
∣∣ds =

t1∫
t0

∣∣p(s)
∣∣ds.

Having this in mind, we can easily see that the variational stability of the trivial solution of (1.1) is a more general
concept than that of integral stability. Therefore, we consider only the variational stability.
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Definition 1.7. The solution y ≡ 0 of (1.1) is called variationally attracting if there is δ̃ > 0 and, for every
ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if

‖φ‖ < δ̃ and vart1t0P < ρ

with P ∈ BV −(
[t0, t1], Rn

)
, then

∣∣y(t; t0, φ)
∣∣ < ε for all t ≥ t0 + T, t ∈ [t0, t1],

where y(t; t0, φ) is a solution of Eq. (1.5) satisfying yt0 = φ.

Definition 1.8. The solution y ≡ 0 of (1.1) is called variationally asymptotically stable if it is variationally
stable and variationally attracting.

It is clear by definition that if the solution y ≡ 0 of (1.1) is variationally stable, then it is also Lyapunov stable.
A similar statement is also true for asymptotic stabilities.

Maybe, the reader is wondering at this moment why Definitions 1.6 to 1.8 are presented for RFDEs. One
reason is that stability with respect to permanently acting perturbations is of interest for technology. The second is
a pragmatic one, since we have results on stability for GODEs at our disposal that can be used in this context. See
[3, 4] and the development of the theory in the next section.

To the first reason we add that the perturbation in the case of integral stability can be large enough as long as
its integral is small. One could also consider perturbations of the form p(t, y, yt) and the same technique would
apply. However, the theory around would be more complicated technically. In the case of variational stability, we
can think about the possibility of perturbing the original equation (1.1) by an integrable function plus a Dirac sum
acting on a countable set and then interpret the solution appropriately. In this case, the solution is a left continuous
function. It is clear that (1.5) can be interpreted as an equation with impulses acting at points of discontinuity of the
function P and described in the form given, e.g., in the book [5] and, of course, in numerous papers of the Kiev
ODE group concentrated around these two personalities.

2. GODE Corresponding to (1.5)

Let X be a Banach space and consider Ω ⊂ X ×R. Assume that G : Ω → X is a given X-valued function
with G(x, t) defined for every (x, t) ∈ Ω.

Having the concept of Kurzweil integrability in mind (see, e.g., [3, 6, 7] or [4]), we now present the concept of
generalized differential equation.

Definition 2.1. A function x : [α, β] → X is called a solution of the generalized ordinary differential equa-
tion

dx

dτ
= DG(x, t) (2.1)

on the interval [α, β] ⊂ R if (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v) − x(γ) =

v∫
γ

DG(x(τ), t) (2.2)

holds for every γ, v ∈ [α, β], where the integral is considered in the sense of Kurzweil.
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Let us mention that the theory of generalized ordinary differential equations presented, e.g., in [7] is for the
case where X = R

n, but it is easy to check that all basic results also hold in the case of a Banach space.
Given an initial condition (z0, t0) ∈ Ω, the following definition of the solution of the initial-value problem

for Eq. (2.1) will be used.

Definition 2.2. A function x : [α, β] → X is a solution of the generalized ordinary differential equation (2.1)
with initial condition x(t0) = z0 on the interval [α, β] ⊂ R if t0 ∈ [α, β], (x(t), t) ∈ Ω for all t ∈ [α, β], and
the equality

x(v) − z0 =

v∫
t0

DG(x(τ), t) (2.3)

holds for every v ∈ [α, β].

We now consider Ω = G1 × [t0,+∞) and define a special class of functions F : Ω → X.

Definition 2.3. We say that a function G : Ω → X belongs to the class F(Ω, h) if there exists a nondecreas-
ing left continuous function h : [t0, +∞) → R such that

∥∥G(x, s2) − G(x, s1)
∥∥ ≤ |h(s2) − h(s1)| (2.4)

for all (x, s2), (x, s1) ∈ Ω and

∥∥G(x, s2) − G(x, s1) − G(y, s2) + G(y, s1)
∥∥ ≤ ‖x − y‖|h(s2) − h(s1)| (2.5)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω.

Suppose that f(φ, t) : G1 × [t0,+∞) → R
n is such that, for every y ∈ G1, the mapping t 
→ f (yt, t)

belongs to L1([t0, +∞), Rn) and f satisfies conditions (A) and (B).
Assume further that P ∈ BV −(

[t0, +∞), Rn
)
.

For y ∈ G1 and t ∈ [t0 − r, +∞), we define

F (y, t) (ϑ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0,

ϑ∫
t0

f (ys, s) ds, t0 ≤ ϑ ≤ t < +∞,

t∫
t0

f (ys, s) ds, t0 ≤ t ≤ ϑ < +∞,

(2.6)

and for t ∈ [t0 − r, +∞) we set

P (t) (ϑ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0,

P (ϑ) − P (t0), t0 ≤ ϑ ≤ t < +∞,

P (t) − P (t0), t0 ≤ t ≤ ϑ < +∞.

(2.7)
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Then

G(y, t) = F (y, t) + P (t) (2.8)

defines an element G(y, t) of G−(
[t0 − r, +∞), Rn

)
, and G(y, t)(ϑ) ∈ R

n is the value of G(y, t) at a point
ϑ ∈ [t0 − r, +∞), i.e.,

G : G1 × [t0 − r, +∞) → G−([t0 − r, +∞), Rn).

The idea to construct the right-hand side of a GODE that corresponds to a functional differential equation of
the form (1.1) is due to Imaz, Oliva, and Vorel [8, 9].

Let h : [t0, +∞) → R be defined by

h(t) =

t∫
t0

[
M(s) + L(s)

]
ds + vartt0P, t ∈ [t0,+∞).

Then the function h is left continuous and nondecreasing, since M,L : [t0, +∞) → R are nonnegative a.e. and
P ∈ BV −(

[t0, +∞), Rn
)
.

Under the given assumptions, it is a matter of routine to prove that the function G given by (2.8) belongs to
the class F(Ω, h), where Ω = G1 × [t0, +∞) (see, e.g., [6]).

Consider G given by (2.8). If [α, β] ⊂ [t0, +∞) and x : [α, β] → G−([t0 − r, +∞), Rn) is a solution of
(2.1) in [α, β], then x is of bounded variation in [α, β] and

varβ
α x ≤ h(β) − h(α) < +∞.

Moreover, every point in [α, β] at which the function h is continuous is a point of continuity of the solution
x : [α, β] → G−(

[t0 − r, +∞), Rn
)
, and we have

x(σ+) − x(σ) = lim
s→σ+

x(s) − x(σ) = G(x(σ), σ+) − G(x(σ), σ)

for σ ∈ [α, β) and

x(σ) − x(σ−) = x(σ) − lim
s→σ−x(s) = G

(
x(σ), σ) − G(x(σ), σ−)

for σ ∈ (α, β], where G(x, σ+) = lims→σ+ G(x, s) for σ ∈ [α, β), and G(x, σ−) = lims→σ− G(x, s) for
σ ∈ (α, β]. For a proof of these facts, the reader may want to consult, e.g., [7].

We now present a result on the existence of the integral involved in the definition of the solution of the gener-
alized equation (2.1). This result is a particular case of Corollary 3.16 and Proposition 3.6, both from [7].

Lemma 2.1. Let G ∈ F(Ω, h). Suppose that x : [α, β] → X, [α, β] ⊂ [t0,+∞), is of bounded variation

in [α, β] and (x(s), s) ∈ Ω for every s ∈ [α, β]. Then the integral
∫ β

α
DG(x(τ), t) exists and the function

s 
→
∫ s

α
DG(x(τ), t) ∈ X is of bounded variation for all s ∈ [α, β].

The next result concerns the existence of a solution of (2.1) (see [6], Theorem 2.15).
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Theorem 2.1. Let G : Ω → X be an element of the class F(Ω, h), where the function h is left continuous(
i.e., h(t−) = h(t), t ∈ (a,+∞)

)
. Then, for every (x̃, t0) ∈ Ω such that, for x̃+ = x̃ + G(x̃, t0+) − G(x̃, t0),

we have (x̃+, t0) ∈ Ω, there exists Δ > 0 such that, on the interval [t0, t0 + Δ], there exists a unique solution
x : [t0, t0 + Δ] → X of the generalized ordinary differential equation (2.1) for which x(t0) = x̃.

Consider the generalized equation (2.1). We now work with a specific initial-value problem for Eq. (2.3) with
G given by (2.8).

Let φ ∈ G− ([−r, 0], Rn) and σ > 0 be given. A function x(t) defined on the interval [t0 − r, t0 + σ] and
taking values in G−(

[t0−r, t0 +σ], Rn
)

is a (local) solution of the generalized ordinary differential equation (2.1)
in the interval [t0, t0+σ]

(
or in [t0−r, t0+σ]

)
with initial condition x (t0) ∈ G1 given for φ ∈ G−(

[−r, 0], Rn
)

by

x(t0)(ϑ) =

⎧⎨
⎩

φ(ϑ − t0) for ϑ ∈ [t0 − r, t0],

x(t0)(t0) for ϑ ∈ [t0, t0 + σ]

if

x(v) = x (t0) +

v∫
t0

DG (x (τ) , t)

for every v ∈ [t0, t0 + σ].
For a proof of the next result, see [6], Lemma 3.3.

Proposition 2.1. If x(t) is a solution of (2.1) in the interval [t0, t0 + σ] , then, for v ∈ [t0, t0 + σ] , we have

x(v)(ϑ) = x(v)(v), ϑ ≥ v, ϑ ∈ [
t0 − r, t0 + σ

]
,

and

x(v)(ϑ) = x (ϑ) (ϑ), v ≥ ϑ, ϑ ∈ [t0 − r, t0 + σ].

Left continuous regulated functions with the properties of Proposition 2.1 are candidates for considering them
as solutions of the initial-value problem described above for (2.1).

The next result is the key to our approach to retarded functional differential equations by the theory of gener-
alized differential equations. It states the correspondence between these equations by relating their solutions in a
one-to-one manner. For a proof of it, see [6].

Proposition 2.2. The following assertions are true:

(i) Consider Eq. (1.5), where f : G1 × [t0, t0 + σ] → R
n, t 
→ f (yt, t) is Lebesgue integrable on

[t0, t0 + σ], P ∈ BV −([t0, t0 + σ], Rn), and conditions (A) and (B) are satisfied. Let y(t) be a so-
lution of problem (1.5) in the interval [t0, t0 + σ]. Given t ∈ [t0 − r, t0 + σ] , let

x(t)(ϑ) =

⎧⎨
⎩

y(ϑ), ϑ ∈ [t0 − r, t],

y(t), ϑ ∈ [t, t0 + σ].

Then x(t) ∈ G− ([t0 − r, t0 + σ], Rn) is a solution of (2.1) in [t0 − r, t0 + σ] , where the right-hand
side of (2.1) is given by (2.8).
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(ii) Conversely, let G be given by (2.8) and let x(t) be a solution of (2.1) in the interval [t0 − r, t0 + σ]
satisfying the initial condition

x(t0)(ϑ) =

⎧⎨
⎩

φ(ϑ − t0), t0 − r ≤ ϑ ≤ t0,

x(t0)(t0), t0 ≤ ϑ ≤ t0 + σ.
(2.9)

For every ϑ ∈ [t0 − r, t0 + σ] , define

y(ϑ) =

⎧⎨
⎩

x(t0)(ϑ), t0 − r ≤ ϑ ≤ t0,

x(ϑ)(ϑ), t0 ≤ ϑ ≤ t0 + σ.

Then y(ϑ) is a solution of (1.5) in [t0 − r, t0 + σ] and y(ϑ) = x (t0 + σ) (ϑ) for all ϑ ∈
[t0 − r, t0 + σ] .

Proposition 2.2 gives a one-to-one correspondence between the solutions y of (1.5) and the solutions x of
(2.1). Thus, given a solution y of (1.5), we have an x given by Proposition 2.2, (i), that satisfies Eq. (2.1).
Therefore, taking t0 ≤ t1 ≤ t2 ≤ t0 + σ, we get

∥∥x(t2) − x(t1)
∥∥ = sup

ϑ∈[t0−r,t0+σ]

∣∣x(t2)(ϑ) − x(t1)(ϑ)
∣∣

= sup
ϑ∈[t0,t0+σ]

∣∣x(t2)(ϑ) − x(t1)(ϑ)
∣∣ = sup

ϑ∈[t1,t2]

∣∣y(ϑ) − y(t1)
∣∣ ≤ vart2t1y,

and taking t0 < t1 < t2 < . . . < tk = t0 + σ, we get

k∑
i=1

∥∥x(ti) − x(ti−1)
∥∥ ≤

k∑
i=1

vartiti−1
y = vart0+σ

t0
y.

Hence,

vart0+σ
t0

x ≤ vart0+σ
t0

y.

It has to be noted that a solution y of (1.5) is a function of bounded variation, and, therefore, the corresponding
x is also of bounded variation.

Conversely, if G is given by (2.8) and x(t) is a solution of (2.1) with initial condition (2.9), then it can be
shown by the procedure above that y given by Proposition 2.2, (ii), satisfies

vart0+σ
t0

y ≤ vart0+σ
t0

x < +∞.

In this manner, we have the situation of a one-to-one correspondence between the solutions of (1.5) and (2.1),
and their variations (in different spaces) are the same and finite.

Remark 2.1. Let us note that, in our paper [6], a similar approach to impulsive retarded functional equations
was presented. Of course, the definition in this case is slightly more complicated by an additional term. The
complication is technical only, and the reasoning of this note can be used similarly for this case, too. Again, the
link between GODEs and classical systems with impulses as they are described in [5] is given in [7].
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3. Concepts of Stability for GODEs

In this section, Ω = Bc × [t0 − r,∞), where Bc =
{
y ∈ X; ‖y‖ < c

}
, c > 0, and X is any Banach space.

Let r ≥ 0. In the sequel, we assume that, for F : Ω → X, we have F ∈ F(Ω, h) and F (0, t)− F (0, s) = 0 for
t, s ∈ [t0 − r, +∞). Then, for every [γ, v] ⊂ [t0 − r, +∞), we get

v∫
γ

DF (0, t) = F (0, v) − F (0, γ) = 0,

and, therefore, x ≡ 0 is a solution of the generalized equation

dx

dτ
= DF (x, t) (3.1)

on [t0 − r, +∞).
If F ∈ F(Ω, h) and x : [γ, v] → X is a solution of (3.1), where [γ, v] ⊂ [t0−r, +∞), then x is of bounded

variation in [γ, v]. Thus, it is natural to measure the distance between two solutions by the variation norm.
The next stability concepts are based on the variation of solutions around x ≡ 0.

Definition 3.1. The solution x ≡ 0 of (3.1) is called variationally stable if, for every ε > 0, there exists
δ = δ(ε) > 0 such that if x : [γ, v] → Bc, t0 − r ≤ γ < v < +∞, is a function of bounded variation on [γ, v]
such that

‖x(γ)‖ < δ

and

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ < δ,

then ∥∥x(t)
∥∥ < ε, t ∈ [γ, v].

Definition 3.2. The solution x ≡ 0 of (3.1) is called variationally attracting if there exists δ0 > 0 and, for
every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if x : [γ, v] → Bc, t0 − r ≤ γ < v < +∞,

is a function of bounded variation in [γ, v] such that

∥∥x(γ)
∥∥ < δ0

and

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ < ρ,

then ∥∥x(t)
∥∥ < ε for t ∈ [γ, v] ∩ [γ + T, +∞) and γ ≥ t0 − r.
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Definition 3.3. The solution x ≡ 0 of (3.1) is called variationally asymptotically stable if it is variationally
stable and variationally attracting.

For Definitions 3.1–3.3, it should be noted that if x : [γ, v] → X is a solution of (3.1) then

(a) x is of bounded variation on [γ, v] and

(b) varvγ

(
x(s) −

∫ s

γ
DF (x(τ), t)

)
= 0.

The conditions in Definition 3.1 also mean that the function x of bounded variation is close, in the variation

norm
∥∥x(γ)

∥∥ + var
(
x(s) −

∫ s

γ
DF (x(τ), t)

)
, to the solution x ≡ 0 of (3.1).

In addition to the generalized differential equation (3.1), let us consider the perturbed generalized equation

dx

dτ
= D

[
F (x, t) + P (t)

]
, (3.2)

where P ∈ BV −(
[t0 − r,∞), X

)
. It is easy to verify that, for the function G(x, t) = F (x, t) + P (t), we have

G ∈ F(Ω, hP ), where hP (t) = h(t) + vart−rP . Therefore, the solutions of (3.2) have good properties (existence,
uniqueness, etc.; see, e.g., Theorem 2.1).

We now present some other definitions.

Definition 3.4. The solution x ≡ 0 of (3.1) is called stable with respect to perturbations if, for every ε > 0,

there exists δ = δ(ε) > 0 such that if ‖x0‖ < δ and P ∈ BV −(
[γ, v], X

)
is continuous from the left with

varvγP < δ, then ∥∥x(t, γ, x0)
∥∥ < ε for every t ∈ [γ, v],

where x(t, γ, x0) is a solution of the perturbed generalized equation (3.2) with x(γ, γ, x0) = x0 and [γ, v] ⊂
[t0 − r, +∞).

Definition 3.5. The solution x ≡ 0 of (3.1) is called attracting with respect to perturbations if there is δ̃ > 0
and, for every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if

‖x0‖ < δ̃ and varvγP < ρ

with P ∈ BV −(
[γ, v], X

)
, then

∥∥x(t, γ, x0)
∥∥ < ε for all t ≥ γ + T, t ∈ [γ, v],

where x(t, γ, x0) is a solution of the perturbed generalized equation (3.2) with x(γ, γ, x0) = x0 and [γ, v] ⊂
[t0 − r, +∞).

Definition 3.6. The solution x ≡ 0 of (3.1) is called asymptotically stable with respect to perturbations if it
is both stable and attracting with respect to perturbations.

It turns out that the corresponding definitions presented above are equivalent. Indeed, we have the following
result:
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Proposition 3.1. The following statements are true:

(i) The solution x ≡ 0 of (3.1) is variationally stable if and only if it is stable with respect to perturbations.

(ii) The solution x ≡ 0 of (3.1) is variationally attracting if and only if it is attracting with respect to
perturbations.

(iii) The solution x ≡ 0 of (3.1) is variationally asymptotically stable if and only if it is asymptotically stable
with respect to perturbations.

Proof. Let us prove (i). Assume that the solution x ≡ 0 of (3.1) is variationally stable. Let, for ε > 0, the
quantity δ > 0 be given according to Definition 3.4. Then, for the solution x(t) = x(t, γ, x0) of the perturbed
generalized equation (3.2) on [γ, v], we have ‖x(γ)‖ = ‖x(γ, γ, x0)‖ < δ, and, for any s1, s2 ∈ [γ, v], we get

x(s2) − x(s1) =

s2∫
s1

DF (x(τ), t) + P (s2) − P (s1),

i.e.,

x(s2) −
s2∫

γ

DF (x(τ), t) −
⎛
⎝x(s1) −

s1∫
γ

DF (x(τ), t)

⎞
⎠ = P (s2) − P (s1),

whence

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ = varvγP < δ.

Therefore, the variational stability implies that

∥∥x(t)
∥∥ =

∥∥x(t, γ, x0)
∥∥ < ε for t ∈ [γ, v],

and the trivial solution of (3.1) is stable with respect to perturbations.
Conversely, if the solution x ≡ 0 of (3.1) is stable with respect to perturbations, we take x : [γ, v] → Bc,

−r ≤ γ < v < +∞, a function of bounded variation on [γ, v] such that ‖x(γ)‖ < δ and

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ < δ,

where δ > 0 corresponds to some ε > 0 from Definition 3.4.

For s ∈ [γ, v], let P (s) = x(s) −
∫ s

γ
DF (x(τ), t). Then, for s1, s2 ∈ [γ, v], we have

P (s2) − P (s1) = x(s2) − x(s1) −
s2∫

s1

DF (x(τ), t).
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Hence,

x(s2) − x(s1) =

s2∫
s1

DF (x(τ), t) + P (s2) − P (s1), s1, s2 ∈ [γ, v],

which means that x is a solution of (3.2) in [γ, v]. Furthermore, varvγP < δ, P is left continuous, and∥∥x(γ)
∥∥ =

∥∥x(γ, γ, x0)
∥∥ =

∥∥P (γ)
∥∥ < δ. Therefore, the stability with respect to perturbations implies that∥∥x(t)

∥∥ =
∥∥x(t, γ, x0)

∥∥ < ε for all t ∈ [γ, v], and this means that the solution x ≡ 0 of (3.1) is variationally
stable.

Coming to the attractive part in item (ii), assume first that the solution x ≡ 0 of (3.1) is variationally attracting.
Then there is δ0 > 0 and, for every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that if
x : [γ, v] → Bc, −r ≤ γ < v < +∞, is a function of bounded variation in [γ, v] such that ‖x(γ)‖ < δ0 and

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ < ρ,

then ∥∥x(t)
∥∥ < ε, t ∈ [γ, v] ∩ [γ + T, +∞), γ ≥ −r.

If ‖x0‖ < δ̃ and P ∈ BV −(
[γ, v], X

)
is such that varvγP < ρ, then denote by x(t) = x(t, γ, x0) the

solution of the perturbed generalized equation (3.2) satisfying x(γ, γ, x0) = x0. It follows that ‖x(γ)‖ < δ̃, and
we have

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ = varvγP < δ.

Hence, by Definition 3.2, we get

∥∥x(t, γ, x0)
∥∥ =

∥∥x(t)
∥∥ < ε for all t ≥ γ + T, t ∈ [γ, v],

i.e., the solution x ≡ 0 of (3.1) is attracting with respect to perturbations.
Conversely, if the solution x ≡ 0 of (3.1) is attracting with respect to perturbations, assume that x : [γ, v] →

Bc, −r ≤ γ < v < +∞, is a left continuous function of bounded variation in [γ, v] such that
∥∥x(γ)

∥∥ < δ0 and

varvγ

⎛
⎝x(s) −

s∫
γ

DF (x(τ), t)

⎞
⎠ < ρ.

As in the previous part of the proof, it is easy to see that x(t) is a solution of (3.2) on [γ, v], where P (s) =

x(s) −
∫ s

γ
DF (x(τ), t) for s ∈ [γ, v]. This function P belongs to BV −([γ, v], X), and there exists δ0 > 0

and, for every ε > 0, there exist T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 such that varvγP < ρ. Definition 3.5 now
yields
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∥∥x(t)
∥∥ < ε, t ∈ [γ, v] ∩ [γ + T, +∞), γ ≥ −r,

which means that we have the variational attractivity of the trivial solution of (3.1).
Item (iii) follows from (i) and (ii), and we complete the proof.

4. Stability Relations between Equations

Consider the retarded system (1.1). Let G1 ⊂ G([t0 − r, +∞), Rn) be defined as in the beginning of the
paper.

We assume that f(φ, t) : G1 × [t0, +∞) → R
n is such that, for every y ∈ G1, the mapping t 
→ f (yt, t)

belongs to L1

(
[t0 − r, +∞), Rn

)
and conditions (A) and (B) are satisfied. Assume, in addition, that f(0, t) = 0

for every t ∈ [t0, +∞). Thus, y ≡ 0 is a solution of (1.1) in [t0 − r, +∞).
For y ∈ G1 and t ∈ [t0 − r, +∞), we define F (y, t) as in (2.6). Then

F : G1 × [t0 − r, +∞) → C
(
[t0 − r, +∞), Rn

)
,

and, by definition, we have F (0, t) = 0 for all t ∈ [t0 − r, +∞). Then x ≡ 0 is a solution of the generalized
differential equation

dx

dτ
= DF (x, t) (4.1)

in [t0 − r, +∞).
By the results from Proposition 2.2, there is a well-described one-to-one correspondence between solutions of

Eqs. (1.1) and (4.1) with F given by (2.6).
We also consider the perturbed retarded equation (1.5) and, again by Proposition 2.2, its corresponding per-

turbed generalized equation

dx

dτ
= DG(x, t) = D

[
F (x, t) + P (t)

]
, (4.2)

where F is given by (2.6) and P is given by (2.7).
We have

P : [t0 − r, +∞) → G−(
[t0 − r, +∞), Rn

)
and, hence,

G : G1 × [t0 − r, +∞) → G−(
[t0 − r, +∞), Rn

)
.

We can now present a result that relates the respective concepts of variational stability and variational attrac-
tivity of the trivial solution of the retarded equation (1.1) and the trivial solution of its corresponding generalized
equation (4.1).

Theorem 4.1. The following statements are true:

(i) The solution y ≡ 0 of (1.1) is variationally stable if and only if the solution x ≡ 0 of (4.1) is variationally
stable.

(ii) The solution y ≡ 0 of (1.1) is variationally attracting if and only if the solution x ≡ 0 of (4.1) is
variationally attracting.
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(iii) The solution y ≡ 0 of (1.1) is variationally asymptotically stable if and only if the solution x ≡ 0 of
(4.1) is variationally asymptotically stable.

Proof. We begin with proving (i). Assume that the trivial solution of (1.1) in [t0 − r, +∞) is variationally
stable. Then, given ε > 0, there exists δ = δ(ε) > 0 such that if φ ∈ G−([−r, 0], Rn) is such that ‖φ‖ < δ and
P (t) belongs to BV −(

[t0, t1], Rn
)

with vart1t0P < δ, then

∣∣y(t; t0, φ)
∣∣ <

ε

2
, t ∈ [t0, t1],

where y(t; t0, φ) is a solution of (1.5).
We want to prove that the trivial solution of the generalized equation (4.1) with F given by (2.6) is stable with

respect to perturbations. Then the result will follow by Proposition 3.1.
Assume that δ = δ(ε) > 0 from Definition 1.6 is such that δ < ε/2. Let x(t; t0, x0) be a solution of the

perturbed generalized equation (4.2) with F given by (2.6), P given by (2.7), and x(t0; t0, x0) = x0 and assume
that ‖x0‖ < δ, where x0 ∈ G−(

[t0 − r, +∞), Rn
)
, and P ∈ BV −(

[t0, t1], Rn
)

with vart1t0P < δ.

We have
∥∥x(t0)

∥∥ =
∥∥x(t0; t0, x0)

∥∥ =
∥∥x0

∥∥ < δ, which means that supθ∈[t0−r,+∞) |x(t0)(θ)| < δ and,
therefore, supθ∈[t0−r,t0] |φ(θ − t0)| < δ. Thus,

‖φ‖ < δ.

Since x is a solution of the perturbed generalized equation, we have

x(s2) − x(s1) =

s2∫
s1

D
[
F (x(τ), t) + P (t)

]
=

s2∫
s1

DF (x(τ), t) + P (s2) − P (s1)

for s1, s2 ∈ [t0, t1].
Therefore,

x(s2) −
s2∫

t0

DF (x(τ), t) − x(s1) +

s1∫
t0

DF (x(τ), t) = P (s2) − P (s1).

Hence,

vart1t0

⎛
⎝x(s) −

s∫
t0

DF (x(τ), t)

⎞
⎠ = vart1t0P < δ.

Thus, by the variational stability of the trivial solution of (1.1), we have
∣∣y(t)

∣∣ < ε/2 for all t ∈ [t0, t1].
Finally, we get

∥∥x(t)
∥∥ = sup

θ∈[t0−r,+∞)

∣∣x(t)(θ)
∣∣ = sup

θ∈[t0−r,t]

∣∣y(θ)
∣∣ ≤ ‖φ‖ + sup

θ∈[t0,t]

∣∣y(θ)
∣∣ ≤ δ +

ε

2
< ε,

and we have the sufficiency of item (i).
Using (i) from Proposition 3.1, we now assume that the trivial solution of (4.1) is stable with respect to

perturbations. Thus, given ε > 0, let δ = δ(ε) > 0 be the quantity from Definition 3.4.
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Let y(t; t0, φ) be a solution of the perturbed retarded equation (1.5). Suppose that ‖φ‖ < δ and P ∈
BV −(

[t0, t1], Rn
)

with vart1t0P < δ. We want to prove that y ≡ 0 is variationally stable, i.e.,
∣∣y(t; t0, φ)

∣∣ < ε,

t ∈ [t0, t1]. Then the converse of item (i) (necessity) will follow by Proposition 3.1.
Let x(t; t0, x0) be the solution of the perturbed generalized equation (4.2) with F given by (2.6) and P given

by (2.7), i.e., x is the solution corresponding to y obtained according to Proposition 2.2. We have vart1t0x ≤ vart1t0y
(see the comments after Proposition 2.2) and, analogously, vart1t0P ≤ vart1t0P < δ. Thus, it follows from the
stability with respect to perturbations of the trivial solution of (4.1) that ‖x(t)‖ < ε, i.e.,

sup
θ∈[t0−r,+∞)

∣∣x(t)(θ)
∣∣ < ε.

Therefore, the relation in Proposition 2.2 implies that

sup
θ∈[t0−r,t]

∣∣y(θ)
∣∣ < ε, t ∈ [t0, t1].

In particular,

sup
θ∈[t0,t1]

∣∣y(θ)
∣∣ ≤ sup

θ∈[t0−r,t1]

∣∣y(θ)
∣∣ < ε.

We now prove (ii).
First, suppose that the trivial solution of the retarded equation (1.1) is variationally attracting. Thus, there

exists δ0 > 0, and, for every ε > 0, let T = T (ε) ≥ 0 and ρ = ρ(ε) > 0 be from Definition 1.7.
Let x(t; t0, x0) be a solution of the perturbed generalized equation (4.2) with F given by (2.6) and P given

by (2.7) and let y(t; t0, φ) be the solution of the perturbed retarded equation (1.5) obtained from x according to
Proposition 2.2.

Let δ > 0 be such that ‖x0‖ < δ and suppose that P ∈ BV −([t0, t1], Rn) with vart1t0P < ρ. We can
assume, without loss of generality, that δ < min{δ0, ρ, ε/2}. Then

∥∥x(t0)
∥∥ =

∥∥x0

∥∥ < δ0

and

vart1t0

⎛
⎝x(s) −

s∫
t0

DF (x(τ), t)

⎞
⎠ = vart1t0P < ρ.

However, the variational attractivity of the trivial solution of (1.1) yields

∣∣y(t; t0, φ)
∣∣ =

∣∣y(t)
∣∣ <

ε

2
, t ≥ t0 + T, t ∈ [t0, t1].

Then, taking δ < ε/2, we obtain

∥∥x(t)
∥∥ = sup

θ∈[t0−r,+∞)

∣∣x(t)(θ)
∣∣ = sup

θ∈[t0−r,t]

∣∣y(θ)
∣∣ ≤ ‖φ‖ + sup

θ∈[t0,t]
|y(θ)| < ‖x0‖ +

ε

2
< ε
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for t ≥ t0 + T, t ∈ [t0, t1], where we have applied the relations of Proposition 2.2 to get the second equality and
‖φ‖ = ‖x0‖, since

‖x0‖ =
∥∥x(t0)

∥∥ = sup
θ∈[t0−r,+∞)

∣∣x(t)(θ)
∣∣ = sup

θ∈[t0−r,t0]
|φ(θ − t0)| = ‖φ‖.

Thus,

∥∥x(t; t0, x0)
∥∥ =

∥∥x(t)
∥∥ < ε, t ≥ t0 + T, t ∈ [t0, t1],

and, hence, x is attracting with respect to perturbations. The sufficiency of (ii) follows then by Proposition 3.1.
We now prove the converse of item (ii). Suppose that the trivial solution of the generalized equation (4.1) is

attracting with respect to perturbations. Then there exists δ0 > 0, and, given ε > 0, let T = T (ε) ≥ 0 and
ρ = ρ(ε) > 0 be from Definition 3.5.

Let y(t; t0, φ) be a solution of the perturbed retarded equation (1.3), or, equivalently, of Eq. (1.5) with P (t) =∫ t

t0

p(s)ds, t ≥ t0. Suppose that ‖φ‖ < δ0 and P ∈ BV −([t0, t1], Rn) with vart1t0P < ρ.

By Proposition 2.2, it follows that ‖x0‖ = ‖φ‖ < δ0. Also, for P given by (2.7), we have vart1t0P ≤
vart1t0P < ρ (see the comments after Proposition 2.2). Therefore, the attractivity with respect to perturbations of
the trivial solution of (4.1) yields

∥∥x(t)
∥∥ =

∥∥x(t; t0, x0)
∥∥ < ε, t ≥ t0 + T, t ∈ [t0, t1].

Therefore, for t ≥ t0 + T, t ∈ [t0, t1], by Proposition 2.2 we have

∣∣y(t)
∣∣ =

∣∣y(t; t0, φ)
∣∣ =

∣∣x(t)(t)
∣∣ ≤ ∥∥x(t)

∥∥ < ε.

Assertion (iii) follows from (i) and (ii) and from Proposition 3.1.

5. Converse Lyapunov Theorems

In the book [7] and in [4], direct Lyapunov-type theorems for stability of a solution of a GODE are given. In
[3], they are used for Eq. (1.1).

Converse Lyapunov theorems are an interesting topic, and we present them shortly in this concluding section
of the paper.

In order to obtain converse Lyapunov theorems for Eq. (1.1), we need the following results, borrowed from [7]
or [4], for the generalized differential equation (4.1):

Let us consider the general case where Ω = Bc × [t0 − r,∞), Bc =
{
y ∈ X; ‖y‖ < c

}
, c > 0, and

X is a Banach space. Suppose that F : Ω → X is such that F ∈ F(Ω, h) and F (0, t) − F (0, s) = 0 for
t, s ∈ [t0 − r, +∞) and consider the generalized differential equation

dx

dτ
= DF (x, t). (5.1)

The following two results are Theorems 10.23 and 10.24, respectively, from [7]. They can also be found in [4].
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Theorem 5.1. If the trivial solution x ≡ 0 of the generalized differential equation (5.1) is variationally
stable, then, for every 0 < a < c, there exists a function V : [t0 − r, +∞) × Ba → R, where Ba = {y ∈
X; ‖y‖ < a}, such that, for every x ∈ Ba, the function V (·, x) belongs to BV −([t0 − r, +∞), R) and the
following conditions are satisfied:

(i) V (t, 0) = 0, t ∈ [t0 − r, +∞);

(ii) |V (t, z) − V (t, y)| ≤ ‖z − y‖, t ∈ [t0 − r, +∞), z, y ∈ Ba;

(iii) V is positive definite along every solution x(t) of the generalized equation (5.1), i.e., there is a function
b : [0, +∞) → R of Hahn class such that

V (t, x(t)) ≥ b
(‖x(t)‖), (t, x(t)) ∈ [t0 − r, +∞) × Ba;

(iv) for all solutions x(t) of (5.1),

V̇ (t, x(t)) = lim sup
η→0+

V (t + η, x(t + η)) − V (t, x(t))
η

≤ 0,

i.e., the right derivative of V along every solution x(t) of (5.1) is nonpositive.

Theorem 5.2. If the trivial solution x ≡ 0 of the generalized differential equation (5.1) is variationally
asymptotically stable, then, for every 0 < a < c, there exists a function V : [t0−r, +∞)×Ba → R such that, for
every x ∈ Ba, the function V (·, x) belongs to BV −(

[t0−r, +∞), R
)

and the following conditions are satisfied:

(i) V (t, 0) = 0, t ∈ [t0 − r, +∞);

(ii)
∣∣V (t, z) − V (t, y)

∣∣ ≤ ‖z − y‖, t ∈ [t0 − r, +∞), z, y ∈ Ba;

(iii) V is positive definite along every solution x(t) of the generalized equation (5.1), i.e., there is a function
b : [0, +∞) → R of Hahn class such that

V (t, x(t)) ≥ b
(‖x(t)‖), (t, x(t)) ∈ [t0 − r, +∞) × Ba;

(iv) for all solutions x(s) of (5.1) defined for s ≥ t, where x(t) = z ∈ Ba, the following relation is true:

V̇ (t, x(t)) = lim sup
η→0+

V (t + η, x(t + η)) − V (t, x(t))
η

≤ V (t, z).

Now let us consider a more specialized equation (4.1) with F given by (2.6) that corresponds to the retarded
system (1.1). We consider X = G−([t0 − r, +∞), Rn). As in [3], we need to relate a Lyapunov functional for
(4.1) to a Lyapunov functional for (1.1)

Let y : [γ, v] → R
n be a solution of Eq. (1.1) on [γ, v] ⊂ [t0 − r, +∞), [γ, v] � t0, such that yt = ψ for a

given t ≥ t0, i.e., ψ ∈ G−([−r, 0], Rn) and

ψ(θ) = yt (θ) = y (t + θ) = y(t) −
∫

[ t+θ,t]

f (ys, s) ds
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for almost every θ ∈ [−r, 0]. In this case, we write yt+η = yt+η(t, ψ) for every η ≥ 0. If U : [t0 − r, +∞) ×
G−(

[−r, 0], Rn
) → R, then we define

D+U(t, ψ) = lim sup
η→0+

U(t + η, yt+η(t, ψ)) − U(t, yt(t, ψ))
η

for t ≥ t0.

Let x be a solution of the generalized equation (4.1) on the interval [γ, v] ⊂ [t0 − r, +∞), [γ, v] � t0, with
initial condition x(t0) = x0, where

x(t0)(ϑ) =

⎧⎨
⎩

φ(ϑ − t0) for ϑ ∈ [t0 − r, t0],

x(t0)(t0) for ϑ ∈ [t0, +∞).
(5.2)

Then x(t)(t + θ) = y(t + θ) for all t ∈ [t0 − r, +∞) and θ ∈ [−r, 0], and, hence, (x(t))t = yt for all t.

On the other hand, given x(t) ∈ G−([t0 − r, +∞), Rn), since x is locally of bounded variation, we can
consider x(t) as a solution on [γ, v] ⊂ [t0 − r, +∞), [γ, v] � t0, of the generalized equation (4.1) with initial
condition x(t0) = x0 given by (5.2). Then Proposition 2.2 implies that we can find a solution y(t; t0, φ) of (1.1)
by using the solution x(t; t0, x0) of (4.1). Let (x(t))t = ψ. In this case, we write xψ(t) instead of x(t), and we
have yt = ψ.

Consequently, (t, xψ(t)) 
→ (t, yt(t, ψ)) is a one-to-one mapping, and we can define V : [t0 − r, +∞) ×
G−(

[t0 − r,+∞), Rn
) → R by

V (t, xψ(t)) = U(t, yt(t, ψ)), t ≥ t0. (5.3)

Then we have

D+U(t, ψ) = lim sup
η→0+

V (t + η, xψ(t + η)) − V (t, xψ(t))
η

for all t ≥ t0. We write U̇(t, yt) = D+U(t, yt).
With the notation above, we can now present converse Lyapunov results for Eq. (1.1).

Theorem 5.3. If the trivial solution y ≡ 0 of the retarded differential equation (1.1) is variation-
ally stable, then, for every 0 < a < c, there exists a function U : [t0 − r, +∞) × Ea → R, where
Ea =

{
ψ ∈ G−([−r, 0], Rn); ‖ψ‖ < a

}
, such that, for every x ∈ Ea, the function U(·, ψ) belongs to

BV −([t0 − r, +∞), R) and the following conditions are satisfied:

(i) U(t, 0) = 0, t ∈ [t0 − r, +∞);

(ii)
∣∣U(t, ψ) − U(t, ψ)

∣∣ ≤ ‖ψ − ψ‖, t ∈ [t0 − r, +∞), ψ, ψ ∈ Ea;

(iii) U is positive definite along every solution y(t) of the retarded equation (1.1), i.e., there is a function
b : [0, +∞) → R of Hahn class such that

U(t, yt) ≥ b(‖yt‖), (t, yt) ∈ [t0 − r, +∞) × Ea;
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(iv) for all solutions y(t) of (1.1),

U̇(t, yt) = lim sup
η→0+

U(t + η, yt+η) − V (t, yt))
η

≤ 0,

i.e., the right derivative of U along every solution y(t) of (1.1) is nonpositive.

Proof. If the trivial solution of (1.1) is variationally stable, then, by Theorem 4.1, the trivial solution of the
generalized equation (4.1) with F given by (2.6) and P given by (2.7) is also variationally stable. Then, by
Theorem 5.1, there exists a function V satisfying all conditions in that theorem. We define U : [t0 − r, +∞) ×
G−([−r, 0], Rn) → R by relation (5.3). Then, as in the proof of Theorem 4.3 in [3], U has the properties above,
and the proof is complete.

The proof of the next result follows as in the proof of Theorem 5.3, but with the use of Theorem 4.5 in [3]
instead of Theorem 4.3 in [3].

Theorem 5.4. If the trivial solution y ≡ 0 of the retarded differential equation (1.1) is variationally asymp-
totically stable, then, for every 0 < a < c, there exists a function U : [t0− r, +∞)×Ea → R such that, for every
x ∈ Ba, the function U(·, x) belongs to BV −([t0 − r, +∞), R) and the following conditions are satisfied:

(i) U(t, 0) = 0, t ∈ [t0 − r, +∞);

(ii)
∣∣U(t, ψ) − U(t, ψ)

∣∣ ≤ ‖ψ − ψ‖, t ∈ [t0 − r, +∞), ψ, ψ ∈ Ea;

(iii) U is positive definite along every solution y(t) of the retarded equation (1.1), i.e., there is a function
b : [0, +∞) → R of Hahn class such that

U(t, yt) ≥ b(‖yt‖), (t, yt) ∈ [t0 − r, +∞) × Ea;

(iv) for all solutions y(s) of (1.1) defined for s ≥ t, where y(t) = ψ ∈ Ea, the following relation is true:

U̇(t, yt) = lim sup
η→0+

U(t + η, yt+η) − U(t, yt)
η

≤ U(t, ψ).

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Grant
No. IAA100190702).

REFERENCES

1. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York (1993).
2. A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York (1966).
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