Márcia Federson, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, SP, Brazil, 05315-970. e-mail: marcia@ime.usp.br

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS

Abstract

In the present paper we give the Fundamental Theorem of Calculus for the variational or Henstock vector integrals ${}^{K}\!\!\int_{\mathbb{R}} \alpha \, df$ and ${}^{K}\!\!\int_{\mathbb{R}} d\alpha \, f$ of multidimensional Banach space-valued functions.

Introduction

In [1, Proposition 3.2], Bongiorno and Di Piazza gave a characterization of the functions which are Kurzweil-Henstock vector integrals of the form

$$h(t) = {}^{K} \int_{[a,t]} f \, dg$$

 $\binom{K}{K}$ for the Kurzweil integral) considering the one-dimensional real-valued case. They state that:

a) if g and F belong to $ACG^*([a, b])$ and $f: [a, b] \to \mathbb{R}$ is such that F'(t) =f(t)g'(t) for m-almost every $t \in [a, b]$ (m for the Lebesgue measure), then f is Kurzweil-Henstock integrable with respect to g (we write $f\in H_g([a,b])$ and for every $t \in [a, b]$, $F(t) = {}^{K} \int_{[a,t]} f \, dg$.

And reciprocally,

b) if $g \in ACG^*([a, b])$ and $f \in H_g([a, b])$, then $\tilde{f}_g \in ACG^*([a, b])$, where $\tilde{f}_g(t) = {}^{K} \int_{[a,t]} f \, dg$ for each $t \in [a, b]$, and there exists $(\tilde{f}_g)'(t) = f(t)g'(t)$ for *m*-almost every $t \in [a, b]$.

Received by the editors January 1, 1999

469

Key Words: Banach Space-Valued functions, Henstock Integral, Fundamental Theorem of Calculus Mathematical Reviews subject classification: 26A39, 26B12

^{*}I thank Prof. Dr. Marina Pizzotti for her careful reading of a great part of the preview.

In order to prove b), Bongiorno and Di Piazza use the result

$${}^{K}\!\!\int_{[a,b]} fg' = {}^{K}\!\!\int_{[a,b]} f\,dg \tag{(*)}$$

referring mainly to [5, p. 186]. However, in this reference, or else in [5, p. 186], McLeod affirms that in general

$${}^{K}\!\!\int_{[a,b]} f \cdot h = {}^{K}\!\!\int_{[a,b]} f \,d\tilde{h}\,, \qquad (**)$$

where $\tilde{h}(t) = {}^{K} \int_{[a,t]} h$. But (**) does not always hold. In [2, p. 37], a counterexample for Banach space-valued functions is given and we present it in Example 1 below. In the real case it is even possible that $\int_{[a,t]} h \neq \int_{[a,t]} d\tilde{h}$ for *m*-almost every $t \in [a, b]$. It suffices to take, for instance, $h : [0, 1] \to \mathbb{R}$ defined by h(t) = 1/q if t = p/q and $p \in \mathbb{N}$ such that $q \neq 0$, q/p and p/q, and h(t) = 0otherwise. For conditions in which (**) holds, the reader may want to consult [2] or [3].

In the present paper we give the Fundamental Theorem of Calculus for the variational or Henstock vector integrals ${}^{K}\!\!\int_{\mathbb{R}} \alpha \, df$ and ${}^{K}\!\!\int_{\mathbb{R}} d\alpha \, f$ of multidimensional Banach space-valued functions.

1 Basic Terminology

For simplicity of proofs and notation, we consider only the two-dimensional case.

Let X and Y be Banach spaces and $f: R \to X$ be a function defined in a compact interval $R \subset \mathbb{R}^2$ (with sides parallel to the coordinate axes). Given $t, s \in \mathbb{R}^2$ with $t \leq s$ (i.e., $t_i \leq s_i, i = 1, 2$), we denote by [t, s] the corresponding closed interval and we write |[t, s]| = m([t, s]), where m denotes the Lebesgue measure.

Any finite set of closed nonoverlapping intervals J_i of R such that $\cup J_i = R$ is called a division of R and denoted by (J_i) . A tagged division of R is a pair $d = (\xi_i, J_i)$, where (J_i) is a division of R and $\xi_i \in J_i$ for every i. Each ξ_i is called the tag of J_i . We denote by TD_R the set of all tagged divisions of R. A tagged partial division d of R is any subset of a tagged division of R and we write $d \in TPD_R$. A gauge of a set $E \subset R$ is a function $\delta : E \to]0, \infty[$ and $d = (\xi_i, J_i) \in TPD_R$ is δ -fine if for each i,

$$J_i \subset B_{\delta(\xi_i)}(\xi_i) = \left\{ t \in R \, ; \, |t - \xi_i| < \delta(\xi_i) \right\}.$$

Let J be a closed interval with sides h and k, $h \leq k$. Given 0 < c < 1, J is said to be c-regular if $h/k \geq c$ and $d = (\xi_i, J_i) \in TPD_R$ is c-regular if each J_i is c-regular.

Let \mathfrak{S}_R be the set of all closed intervals contained in R. A function F: $\mathfrak{S}_R \to X$ is called additive on intervals (we write $F \in A(\mathfrak{S}_R, X)$) if we have that $F(J) = F(J_1) + F(J_2)$ for any intervals J, J_1 and J_2 , with J_1 and J_2 nonoverlapping and $J = J_1 \cup J_2$.

A function $F \in A(\mathfrak{F}_R, X)$ satisfies the regular Strong Lusin Condition on R (we write $F \in {}^{r}SL(\mathfrak{F}_R, X)$), if for every $\epsilon > 0$, every 0 < c < 1 and every $E \subset R$ with m(E) = 0 there is a gauge δ of E such that for every c-regular δ -fine $d = (\xi_i, J_i) \in TDP_R$ with $\xi_i \in E$ for each i, we have that $\sum ||F(J_i)|| < \epsilon$.

Let 0 < c < 1. We say that $F \in A(\mathfrak{F}_R, X)$ is *c*-differentiable at $\xi \in R$ and that $f(\xi)$ is its *c*-derivative (we write $D^cF(\xi) = f(\xi)$), if for every $\epsilon > 0$, there is a neighborhood V of ξ such that for each *c*-regular $J \in \mathfrak{F}_R$ with $\xi \in J \subset V$, we have $||F(J) - f(\xi)|J||| < \epsilon|J|$. If $D^cF(\xi) = f(\xi)$ for every 0 < c < 1, then F is regularly differentiable at $\xi \in R$ with $f(\xi)$ being its regular derivative (we write ${}^rDF(\xi) = f(\xi)$). We say that F is *c*-differentiable at R when F is *c*-differentiable at $\xi \in R$ for every $\xi \in R$, and that F is regularly differentiable at R when F is regularly differentiable at $\xi \in R$ for every $\xi \in R$. Let L(X, Y) denote the space of all continuous functions from X to Y. A function $\alpha \in A(\mathfrak{F}_R, L(X, Y))$ is weakly *c*-differentiable at R if, for every $x \in X$, the function

$$\alpha \cdot x : J \in \mathfrak{S}_R \to \alpha(J) \cdot x \in Y$$

is c-differentiable at R and we write $\alpha \in (D^c)^{\sigma}(\mathfrak{S}_R, L(X, Y))$. If there exists $(D^c)^{\sigma}(\alpha \cdot x)(\xi)$ for every c and every x, we say that α is weakly regularly differentiable at $\xi \in R$. We write $\alpha \in {}^{r}D^{\sigma}(\mathfrak{S}_R, L(X, Y))$, if α is weakly regularly differentiable at $\xi \in R$, for each $\xi \in R$.

A function $f : R \to X$ is regularly Henstock integrable with respect to $\alpha \in A(\mathfrak{S}_R, L(X, Y))$ (we write $f \in {}^rH^{\alpha}(R, X)$), if there exists a function $F^{\alpha} \in A(\mathfrak{S}_R, Y)$ such that for every $\epsilon > 0$ and every 0 < c < 1, there is a gauge δ of R such that for every c-regular δ -fine $d = (\xi_i, J_i) \in TD_R$ we have that

$$\sum_{i} \left\| F^{\alpha}(J_{i}) - \alpha(J_{i})f(\xi_{i}) \right\| < \epsilon \,.$$

If $\alpha(t) = t$, then we write simply ${}^{r}H(R, X)$ and F instead of ${}^{r}H^{\alpha}(R, X)$ and F^{α} respectively.

In an analogous way, a function $\alpha : R \to L(X, Y)$ is regularly Henstock integrable with respect to $f \in A(\mathfrak{S}_R, X)$ (we write $\alpha \in {}^{r}H_f(R, L(X, Y))$), if there exists a function $A_f \in A(\mathfrak{S}_R, Y)$ such that for every $\epsilon > 0$ and every 0 < c < 1, there is a gauge δ of R such that for every c-regular and δ -fine $d = (\xi_i, J_i) \in TD_R$, we have that

$$\sum_{i} \left\| A_f(J_i) - \alpha(\xi_i) f(J_i) \right\| < \epsilon \,.$$

More generally we have: a function $\alpha : R \to L(X, Y)$ is regularly Kurzweil integrable with respect to $f \in A(\mathfrak{S}_R, X)$ (we write $\alpha \in {}^{r}K_f(R, L(X, Y))$) if there exists $I \in Y$ (we write $I = {}^{rK} \int_{[a,t]} \alpha \, df$) such that for every $\epsilon > 0$ and every 0 < c < 1, there is a gauge δ of R such that for every c-regular and δ -fine $d = (\xi_i, J_i) \in TD_R$, we have that

$$\left\|I - \sum_{i} \alpha(\xi_i) f(J_i)\right\| < \epsilon$$

Analogously, a function $f: R \to X$ is regularly Kurzweil integrable with respect to $\alpha \in A(\mathfrak{S}_R, L(X, Y))$ (we write $f \in {}^rK^{\alpha}(R, X)$), if there exists $I \in Y$ (we write $I = {}^{rK} \int_{[a,t]} d\alpha f$) such that for every $\epsilon > 0$ and every 0 < c < 1, there is a gauge δ of R such that for every c-regular and δ -fine $d = (\xi_i, J_i) \in TD_R$, we have that

$$\left\|I - \sum_{i} \alpha(J_i) f(\xi_i)\right\| < \epsilon \,.$$

Let R = [a, b]. If $\alpha \in {}^{r}K_{f}(R, L(X, Y))$, then we define $\tilde{\alpha}_{f}(t) = {}^{rK}\int_{[a,t]} \alpha df$ for each $t \in R$. And, analogously, given $f \in {}^{r}K^{\alpha}(R, X)$, we define $\tilde{f}^{\alpha}(t) = {}^{rK}\int_{[a,t]} d\alpha f$ for each $t \in R$. If $\alpha(t) = t$, then we simply write ${}^{r}K(R, X)$ and $\tilde{f}(t) = {}^{rK}\int_{[a,t]} f$.

We may associate $F \in A(\mathfrak{S}_R, Y)$ with a function from R to Y which we still denote by F: for $R = [a, b] = [a_1, b_1] \times [a_2, b_2]$ we write

$$F(t) = F([a,t]) - F([a,(a_1,t_2)]) - F([a,(t_1,a_2)]) + F([a,a]).$$

Reciprocally, we may associate a function $f : R \to Y$ with a function of intervals of R which we also denote by $f : \mathfrak{T}_R \to X$. In this case we write

$$f([t,s]) = f(s) - f(t_1, s_2) - f(t_2, s_1) + f(t).$$

Thus, when $f \in {}^{r}H^{\alpha}([a, b], X)$, then $F^{\alpha}([a, t]) = \tilde{f}^{\alpha}(t)$ for each $t \in [a, b]$, and analogously, for $\alpha \in {}^{r}K_{f}([a, b], L(X, Y))$, we have that $A_{f}([a, t]) = \tilde{\alpha}_{f}(t)$ for each $t \in [a, b]$, and therefore we can talk about regular Strong Lusin Condition and regular differentiability of an indefinite integral \tilde{f}^{α} or $\tilde{\alpha}_{f}$. **Remark.** When X is of finite dimension, then

$${}^{r}H^{\alpha}([a,b],X) = {}^{r}K^{\alpha}([a,b],X)$$

and

$${}^{r}H_f([a,b],L(X,Y)) = {}^{r}K_f([a,b],L(X,Y))$$

and such spaces are called spaces of regularly Kurzweil-Henstock integrable functions or spaces of Mawhin integrable functions.

Example 1. Let $X = l_2([a, b])$ and $Y = \mathbb{R}$. Let $f : [a, b] \to X$ be defined by $f(t) = e_t$ (i.e., $e_t(s) = 1$ if s = t, and $e_t(s) = 0$ if $s \neq t$) and let $\alpha : [a, b] \to X' = L(X, \mathbb{R})$ be given by $\alpha(t) = \tilde{e}_t$, where $\tilde{e}_t(x) = \langle e_t, x \rangle$, for every $x \in X$. Then $\alpha(t)f(t) = \langle e_t, e_t \rangle = 1$ and therefore

$${}^{K}\int_{[a,b]}\alpha(t)f(t)\,dt = \int_{[a,b]}\,dt = b - a\,,$$

where \int denotes the Riemann integral. On the other hand, given $\epsilon > 0$, there exists $\delta > 0$, say

$$\delta^{\frac{1}{2}} < \frac{\epsilon}{(b-a)^{\frac{1}{2}}} \,,$$

such that for every $d = (\xi_i, t_i) \in TD_{[a,b]}$ with $\max_i \{t_i - t_{i-1}\} < \delta$, we have that

$$\left\|\sum_{i} f(\xi_{i})(t_{i} - t_{i-1})\right\| = \left\|\sum_{i} e_{\xi_{i}}(t_{i} - t_{i-1})\right\| = \left[\sum_{i} (t_{i} - t_{i-1})^{2}\right]^{\frac{1}{2}}, \quad (1a)$$

where we have used Bessel's equality. But,

$$\left[\sum_{i} (t_i - t_{i-1})^2\right]^{\frac{1}{2}} < \delta^{\frac{1}{2}} \sum_{i} (t_i - t_{i-1})^{\frac{1}{2}} = \left[\delta(b-a)\right]^{\frac{1}{2}} < \epsilon.$$
(1b)

Hence (1a) and (1b) imply that $\tilde{f} = 0$, and so

$$\int_{[a,b]} \alpha(t) \, d\tilde{f}(t) = 0 \, .$$

Now, if [a, b] is a non-degenerate interval, then

$$0 < b - a = {}^{K} \int_{[a,b]} \alpha(t) f(t) \, dt \neq \int_{[a,b]} \alpha(t) \, d\tilde{f}(t) = 0 \, .$$

2 Main Results

For the Henstock vector integral ${}^{rK} \int_{[a,t]} \alpha \, df$ we have:

Theorem 1. Let $f \in {}^{r}SL(\mathfrak{S}_{R}, X)$ and $A \in {}^{r}SL(\mathfrak{S}_{R}, Y)$ be both regularly differentiable on R, and let $\alpha : [a, b] \to L(X, Y)$ be such that ${}^{r}DA = \alpha \cdot ({}^{r}DF)$ m-almost everywhere on R. Then $\alpha \in {}^{r}H_{f}(R, L(X, Y))$ and $A = \tilde{\alpha}_{f}$.

Theorem 2. Let $f \in {}^{r}SL(\mathfrak{T}_{R}, X)$ be regularly differentiable on R and $\alpha \in {}^{r}H_{g}(R, L(X, Y))$ be bounded. Then $\tilde{\alpha}_{f} \in {}^{r}SL(\mathfrak{T}_{R}, Y)$ and there exists ${}^{r}D(\tilde{\alpha}_{f}) = \alpha \cdot ({}^{r}Df)$ m-almost everywhere on R.

And, for the Henstock vector integral ${}^{rK} \int_{[a,t]} d\alpha f$ we have:

Theorem 3. Let $\alpha \in ({}^{r}SL(\mathfrak{S}_{R}, L(X, Y)) \cap {}^{r}D^{\sigma}(\mathfrak{S}_{R}, L(X, Y)))$, let $F \in {}^{r}SL(\mathfrak{S}_{R}, Y)$ be regularly differentiable on R and let $f : R \to X$ be such that ${}^{r}DF(t) = {}^{r}D^{\sigma}(\alpha \cdot f(t))(t)$ for m-almost every $t \in R$. Then $f \in {}^{r}H^{\alpha}(R, X)$ and $F = \tilde{f}^{\alpha}$.

And reciprocally:

Theorem 4. If $\alpha \in ({}^{r}SL(\mathfrak{S}_{R}, L(X, Y)) \cap {}^{r}D^{\sigma}(\mathfrak{S}_{R}, L(X, Y)))$ and $f \in {}^{r}H^{\alpha}(R, X)$ then $\tilde{f}^{\alpha} \in {}^{r}SL(\mathfrak{S}_{R}, Y)$ and there exists ${}^{r}D\tilde{f}^{\alpha}(t) = {}^{r}D^{\sigma}(\alpha \cdot f(t))(t)$ for m-almost every $t \in R$.

3 Proofs

First we prove the results for the Henstock vector integral ${}^{rK} \int_{[a,t]} \alpha \, df$.

Theorem 5. Let $f \in {}^{r}SL(\mathfrak{I}_{R}, X)$ and $\alpha : R \to L(X, Y)$ such that $\alpha = 0$ *m*-almost everywhere. Then $\alpha \in {}^{r}H_{f}(R, L(X, Y))$ and $\tilde{\alpha}_{f} = 0$.

PROOF. Let $E = \{t \in R; \alpha(t) \neq 0\}$ and $E_n = \{t \in E; n-1 < ||\alpha(t)|| \le n\}$ for each $n \in \mathbb{N}$. By hypothesis, m(E) = 0. Therefore $m(E_n) = 0$ for every n. Since $f \in {}^{r}SL(\mathfrak{F}_R, X)$, then given $n \in \mathbb{N}, \epsilon > 0$ and 0 < c < 1, there is a gauge δ_n of E_n such that for every c-regular δ_n -fine $d_n = (\xi_{n_i}, J_{n_i}) \in TPD_R$ with $\xi_{n_i} \in E_n$ for every i, we have that $\sum_i ||f(J_{n_i})|| < \frac{\epsilon}{n \cdot 2^n}$.

Let δ be a gauge of R such that if $\xi \in E_n$ then $\delta(\xi) = \delta_n(\xi)$, and if $\xi \notin E_n$ then $\delta(\xi)$ takes any value in $]0, \infty[$. Hence, for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TD_R$,

$$\sum_{i} \left\| \alpha(\xi_i) f(J_i) \right\| = \sum_{n} \sum_{\xi_i \in E_n} \left\| \alpha(\xi_i) f(J_i) \right\| \le \sum_{n} n \sum_{\xi_i \in E_n} \left\| f(J_i) \right\| < \epsilon.$$

Corollary. If $f \in {}^{r}SL(\mathfrak{S}_{R}, X)$, $\alpha \in {}^{r}H_{f}(R, L(X, Y))$ and $\beta : [a, b] \to L(X, Y)$ with $\beta = \alpha$ m-almost everywhere, then $\beta \in {}^{r}H_{f}(R, L(X, Y))$ and $\tilde{\beta}_{f} = \tilde{\alpha}_{f}$.

The next example shows us that the hypothesis of f in Theorem 5 is really needed.

Example 2. Even in the one-dimensional case when the regularity is not used, we may have that if f does not satisfy the Strong Lusin Condition, then α may not be Henstock integrable with respect to f. Take, for instance, an interval [a, b] of the real line with $a \ge 1$, and consider the context of Example 1. Consider arbitrary ξ_i and $[t_{i-1}, t_i] \subset [a, b]$ such that $\xi_i \in [t_{i-1}, t_i]$. Then

$$\left\|f(t_i) - f(t_{i-1})\right\|^2 = \left\|e_{t_i} - e_{t_{i-1}}\right\|^2 = |t_i|^2 + |t_{i-1}|^2 > a^2 + a^2 > 1,$$

and hence $f \notin SL([a, b], X)$. We also have that $\alpha(\xi_i) \lfloor f(t_i) - f(t_{i-1}] = 0$ for $\xi_i \in]t_{i-1}, t_i[$ and $\alpha(\xi_i) [f(t_i) - f(t_{i-1})] \neq 0$ otherwise, and therefore α does not belong to $H_f([a, b], L(X, Y))$ (and neither to $K_f([a, b], L(X, Y))$).

Proof of Theorem 1.

1) Let $E = \{t \in R; \text{ there exists } {}^{r}DA(t) = \alpha(t) \cdot {}^{r}DF(t)\}$. Hence, given $\epsilon > 0$, 0 < c < 1 and $\xi \in E$, there is a neighborhood V_1 of ξ such that for every closed *c*-regular interval $J \subset R$, with $\xi \in J \subset V_1$,

$$\left\|A(J) - \alpha(t) \cdot^{c} Df(t)|J|\right\| < \epsilon |J|.$$

2) By hypothesis, $f \in {}^{r}SL(\mathfrak{F}_{R}, X)$ and $m(R \setminus E) = 0$. Therefore, by the Corollary after Theorem 5, we may suppose that $\alpha(t) = 0$ for every $t \in R \setminus E$. 3) Since $m(R \setminus E) = 0$ and $A \in {}^{r}SL(\mathfrak{F}_{R}, Y)$, there is a gauge δ' of $(R \setminus E)$ such that for every *c*-regular δ' -fine $d = (\xi_i, J_i) \in TPD_R$ with $\xi_i \in R \setminus E$, $\sum ||A(J_i)|| < \epsilon$.

4) Because f is regularly differentiable on R and hence c-differentiable on R, there is a neighborhood V_2 of ξ such that for every c-regular $J \subset R$, with $\xi \in J \subset V_2$, and we have that

$$\left\|\alpha(\xi) \cdot f(J) - \alpha(t) \cdot {}^{c}DF(t)|J|\right\| < \epsilon |J|.$$

5) Finally, let δ be a gauge of R such that $B_{\delta(\xi)}(\xi) \subset (V_1 \cap V_2)$ for each $\xi \in E$, and such that if $\xi \in R \setminus E$, then $\delta(\xi) \leq \delta'(\xi)$ and $B_{\delta(\xi)}(\xi) \subset V_2$. Hence for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TD_R$, it follows that

$$\sum_{i} \left\| A(J_i) - \alpha(\xi_i) \cdot f(J_i) \right\| \le$$

$$\sum_{\xi_i \in E} \left\| A(J_i) - \alpha(\xi_i) \cdot f(J_i) \right\| + \sum_{\xi_i \in R \setminus E} \left\| A(J_i) \right\| + \sum_{\xi_i \in R \setminus E} \left\| \alpha(\xi_i) \cdot \left\| f(J_i) \right\|,$$

where the first summand is smaller than $\sum 2\epsilon |J_i| = 2\epsilon |R|$ from 1) and 4). The second summand is smaller than ϵ from 3), and the third summand is equal to zero because we have from 2) that $f(\xi_i) = 0$ for each *i*.

Remark. In Theorem 1, we can require that $A \in {}^{r}SL(\mathfrak{T}_{R}, Y)$ is regularly differentiable *m*-almost everywhere on *R*.

Lemma 6 (Saks-Henstock Lemma).

Given $f \in A(\mathfrak{S}_R, X)$, $\alpha \in {}^{r}H_f(R, L(X, Y))$, let 0 < c < 1, $\epsilon > 0$, and δ be the gauge of R from the definition of $\alpha \in {}^{r}H_f(R, L(X, Y))$. Then for every c-regular δ -fine $d = (\xi_i, J_i) \in TPD_R$ we have that

$$\sum_{i} \left\| \alpha(\xi_i) \cdot f(J_i) - {}^{rK} \int_{J_i} \alpha \, df \right\| < \epsilon \, .$$

PROOF. The proof follows the standard steps.

Theorem 7. If $f \in {}^{r}SL(\mathfrak{S}_R, X)$ and $\alpha \in {}^{r}H_f(R, L(X, Y))$, then $\tilde{\alpha}_f \in {}^{r}SL(\mathfrak{S}_R, Y)$.

PROOF. Let $E \subset R$ be such that m(E) = 0 and let $\beta = \alpha \chi_{(R \setminus E)}$. Then by the Corollary after Theorem 5, $\beta \in {}^{r}H_f(R, L(X, Y))$ and $\tilde{\beta}_f = \tilde{\alpha}_f$. Therefore, given $\epsilon > 0$ and 0 < c < 1, let δ be the gauge of R from the definition of $\beta \in {}^{r}H_f(R, L(X, Y))$. Then, from the Saks-Henstock Lemma (Lemma 6), it follows that for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TPD_R$, with $\xi_i \in E$ for each *i*, we have that

$$\sum_{i} \left\| \tilde{\alpha}_{f}(J_{i}) \right\| = \sum_{i} \left\| \tilde{\alpha}_{f}(J_{i}) - \beta(\xi_{j}) \cdot f(J_{i}) \right\| < \epsilon \,,$$

since $\tilde{\beta}_f = \tilde{\alpha}_f$ and $\beta(\xi_i) = 0$ for every *i*.

Lemma 8. (See [4, Theorem 2.2]). If $g \in {}^{r}H(R, X)$, then there exists ${}^{r}D\tilde{g} = g$ *m*-almost everywhere on *R*.

Theorem 9. Let $f \in {}^{r}SL(\mathfrak{T}_{R}, X)$ be regularly differentiable and let $\alpha \in {}^{r}H_{f}(R, L(X, Y))$ be bounded. Then the function $t \in R \to \alpha(t) \cdot {}^{r}Df(t) \in Y$ is regularly Henstock integrable with

$${}^{rK}\int_R \alpha \cdot {}^{r}Df = {}^{rK}\int_R \alpha \, df \, .$$

Besides, there exists ${}^{r}D\tilde{\alpha}_{f} = \alpha \cdot {}^{r}Df$ m-almost everywhere on R.

476

PROOF. 1) Given $\epsilon > 0$, let δ_1 be the gauge of R from the definition of $\alpha \in {}^{r}H_f(R, L(X, Y))$.

2) Since f is regularly differentiable, then given 0 < c < 1 and $\xi \in R$, there is a neighborhood V_{ξ} of ξ such that for each closed c-regular interval $J \subset R$, with $\xi \in J \subset V_{\xi}$, we have that $||f(J) - {}^{c}Df(\xi)|J||| < \epsilon|J|$.

3) Let δ be a gauge of R such that for each $\xi \in R$, $\delta(\xi) \leq \delta_1(\xi)$ and $B_{\delta(\xi)}(\xi) \subset V_{\xi}$. Hence, for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TD_R$, we have that

$$\sum_{i} \left\| \tilde{\alpha}_{f}(J_{i}) - \alpha(\xi_{i}) \cdot {}^{c}Df(\xi_{i}) |J_{i}| \right\| \leq$$
$$\sum_{i} \left\| \tilde{\alpha}_{f}(J_{i}) - \alpha(\xi_{i}) \cdot f(J_{i}) \right\| + \sum_{i} \left\| \alpha(\xi_{i}) \right\| \cdot \left\| f(J_{i}) - {}^{c}Df(\xi_{i}) |J_{i}| \right\|$$

where the first summand is smaller than ϵ by 1), the second summand is smaller than $\epsilon \|\alpha\|_{\infty} |R|$ ($\|\|_{\infty}$ for the supremum norm) by 2) and the boundedness of α , and the first part of the theorem holds.

The second part comes immediately from Lemma 8. \Box PROOF OF THEOREM 2. This comes immediately from Theorems 5, 7 and 9. \Box

Now we treat the Henstock vector integral ${}^{rK}\int_R d\alpha f$. In general, the proofs for ${}^{rK}\int_R d\alpha f$ are analogous to those for ${}^{rK}\int_R \alpha df$. However, the reader may want to have a look at Theorem 13 which, unlike Theorem 9, does not need the boundedness hypothesis of the Henstock vector integrable function. This fact allows Theorem 4 to be precisely the reciprocal of Theorem 3 (note that Theorems 1 and 2 are not the reciprocal one of another).

Theorem 10. Let $\alpha \in {}^{r}SL(\mathfrak{S}_{R}, L(X, Y))$ and $f : R \to X$ with f = 0 malmost everywhere. Then $f \in {}^{r}H^{\alpha}(R, X)$ and $\tilde{f}^{\alpha} = 0$.

PROOF. Let $E = \{t \in R; f(t) \neq 0\}$ and $E_n = \{t \in E; n-1 < ||f(t)|| \leq n\}$ for each $n \in \mathbb{N}$. By hypothesis, m(E) = 0. Therefore $m(E_n) = 0$ for every n. Since $\alpha \in {}^{r}SL(\mathfrak{S}_R, L(X, Y))$, then for each n, given $\epsilon > 0$ and 0 < c < 1, there is a gauge δ_n of E_n such that for every c-regular δ -fine $d_n = (\xi_{n_i}, J_{n_i}) \in TPD_R$ with $\xi_{n_i} \in E_n$ for each i, we have that $\sum ||\alpha(J_{n_i})|| < \epsilon n2^n$.

Let δ be a gauge of R such that if $\xi \in E_n$ then $\delta(\xi) = \delta_n(\xi)$, and if $\xi \notin E_n$ then $\delta(\xi)$ takes any value in $]0, \infty[$. Hence for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TD_R$,

$$\sum_{i} \left\| \alpha(J_{i}) \cdot f(\xi_{i}) \right\| = \sum_{n} \sum_{\xi_{i} \in E_{n}} \left\| \alpha(J_{i}) \cdot f(\xi_{i}) \right\| \leq \sum_{n} n \sum_{\xi_{i} \in E_{n}} \left\| \alpha(J_{i}) \right\| < \epsilon.$$

Example 3. Even in the one-dimensional case, if α does not satisfy the Strong Lusin Condition, then f may not be Henstock integrable with respect to α . In the context of Example1, we have that

$$\|\alpha(t_i) - \alpha(t_{i-1})\| = \|\tilde{e}_{t_i} - \tilde{e}_{t_{i-1}}\| =$$
$$= \sup_{\|x\| \le 1} \left\{ \|\tilde{e}_{t_i}(x) - \tilde{e}_{t_{i-1}}(x)\| \right\} \ge \|\tilde{e}_{t_i}(e_{t_i}) - \tilde{e}_{t_{i-1}}(e_{t_i})\| = 1,$$

for arbitrary ξ_i and $[t_{i-1}, t_i]$ such that $\xi_i \in [t_{i-1}, t_i] \subset [a, b]$. Hence $\alpha \notin SL([a, b], L(X, Y))$. We also have that $[\alpha(t_i) - \alpha(t_{i-1})]f(\xi_i) = 0$ for $\xi_i \in]t_{i-1}, t_i[$ and $[\alpha(t_i) - \alpha(t_{i-1})]f(\xi_i) \neq 0$ otherwise, and so, $f \notin H^{\alpha}([a, b], X)$.

Corollary. Given $\alpha \in {}^{r}SL(\mathfrak{T}_{R}, L(X, Y))$, $f \in {}^{r}H^{\alpha}(R, X)$ and a function $g: R \to X$ such that g = f m-almost everywhere, then $g \in {}^{r}H^{\alpha}(R, X)$ and $\tilde{g}^{\alpha} = \tilde{f}^{\alpha}$.

PROOF OF THEOREM 3.

1) Let $E = \{t \in R; \text{ there is } {}^{r}DF(t) = {}^{r}D^{\sigma}(\alpha \cdot f(t))(t)\}$. Hence, given $0 < c < 1, \epsilon > 0$ and $\xi \in E$, there exists a neighborhood V_1 of ξ such that for every c-regular $J \in \mathfrak{S}_R$ with $\xi \in J \subset V_1$,

$$\left\|F(J) - (D^c)^{\sigma} (\alpha \cdot f(\xi))(\xi)|J|\right\| < \epsilon |J|.$$

2) By hypothesis, $\alpha \in {}^{r}SL(\Im_{R}, L(X, Y))$ and $m(R \setminus E) = 0$, therefore we may suppose that f(t) = 0 for every $t \in R \setminus E$ by the Corollary after Theorem 10. 3) Since $m(R \setminus E) = 0$ and $F \in {}^{r}SL(\Im_{R}, Y)$, there is a gauge δ' of $R \setminus E$ such that for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TPD_R$ with $\xi_i \in R \setminus E$ for each *i*, we have that $\sum ||F(J_i)|| < \epsilon$.

4) Because $\alpha \in {}^{r}D^{\sigma}(\mathfrak{F}_{R}, L(X, Y))$, there is a neighborhood V_{2} of ξ such that for every *c*-regular $J \in \mathfrak{F}_{R}$ with $\xi \in J \subset V_{2}$,

$$\left\|\alpha(J)f(\xi) - (D^c)^{\sigma} (\alpha \cdot f(\xi))(\xi)|J|\right\| < \epsilon |J|.$$

5) Finally, let δ be a gauge of R such that $B_{\delta(\xi)}(\xi) \subset (V_1 \cap V_2)$ for $\xi \in E$, and such that if $\xi \in R \setminus E$ then $\delta(\xi) \leq \delta'(\xi)$ and $B_{\delta(\xi)}(\xi) \subset V_2$. Hence, for every c-regular δ -fine $d = (\xi_i, J_i) \in TD_R$, it follows that

$$\sum_{i} \left\| F(J_{i}) - \alpha(J_{i})f(\xi_{i}) \right\| \leq \sum_{\xi_{i} \in E} \left\| F(J_{i}) - \alpha(J_{i})f(\xi_{i}) \right\| + \sum_{\xi_{i} \in R \setminus E} \left\| F(J_{i}) \right\| + \sum_{\xi_{i} \in R \setminus E} \left\| \alpha(J_{i}) \right\| \cdot \left\| f(\xi_{i}) \right\|,$$

where the first summand is smaller than $\sum 2\epsilon |J_i| = 2\epsilon |R|$ from 1) and 4), the second summand is smaller than ϵ from 3), and the third summand is equal to zero because $f(\xi_i) = 0$ from 2).

Lemma 11 (Saks-Henstock Lemma). Given $\alpha \in A(\mathfrak{S}_R, L(X, Y))$, $f \in {}^{r}H^{\alpha}(R, X)$, let 0 < c < 1, $\epsilon > 0$, and δ be a gauge of R from the definition of $f \in {}^{r}H^{\alpha}(R, X)$. Then for every c-regular δ -fine $d = (\xi_i, J_i) \in TPD_R$, we have that

$$\sum_{i} \left\| \alpha(J_{i}) \cdot f(\xi_{i}) - {}^{rK} \int_{J_{i}} d\alpha f \right\| < \epsilon \,.$$

PROOF. The proof follows the standard steps.

Theorem 12. If $\alpha \in {}^{r}SL(\mathfrak{S}_{R}, L(X, Y))$ and $f \in {}^{r}H^{\alpha}(R, X)$, then $\tilde{f}^{\alpha} \in {}^{r}SL(\mathfrak{S}_{R}, Y)$.

PROOF. Let $E \subset R$ be such that m(E) = 0 and let $g = f\chi_{(R \setminus E)}$. Then, by the Corollary after Theorem 10, $g \in {}^{r}H^{\alpha}(R, X)$ and for each $t \in R$, we have that $\tilde{g}^{\alpha} = \tilde{f}^{\alpha}$. Given 0 < c < 1 and $\epsilon > 0$, let δ be the gauge of R from the definition of $g \in {}^{r}H^{\alpha}(R, X)$. Then, from the Saks-Henstock Lemma (see Lemma 11), it follows that for every c-regular δ -fine $d = (\xi_i, J_i) \in TPD_R$ with $\xi_i \in E$ for each i, we have that

$$\sum_{i} \left\| \tilde{f}^{\alpha}(J_{i}) \right\| = \sum_{i} \left\| \tilde{f}^{\alpha}(J_{i}) - \alpha(J_{i}) \cdot g(\xi_{i}) \right\| < \epsilon \,,$$

since $\tilde{g}^{\alpha} = \tilde{f}^{\alpha}$ and $g(\xi_i) = 0$ for every *i*.

Theorem 13. If $\alpha \in {}^{r}D^{\sigma}(\mathfrak{S}_{R}, L(X, Y))$ and $f \in {}^{r}H^{\alpha}(R, X)$, then the function $g: R \to Y$ defined by

$$g(t) = {}^{r}D^{\sigma}(\alpha \cdot f(t))(t)$$

is regularly Henstock integrable with ${}^{rK}\int_R g = {}^{rK}\int_R d\alpha f$. Besides, there exists ${}^{r}D\tilde{f}^{\alpha}$ m-almost everywhere on R and, in this case,

$${}^{r}D\tilde{f}^{\alpha}(t) = {}^{r}D^{\sigma}(\alpha \cdot f(t))(t).$$

PROOF. 1) Given $\epsilon > 0$ and 0 < c < 1, let δ_1 be the gauge of R from the definition of $f \in {}^{r}H^{\alpha}(R, X)$.

2) Since $\alpha \in {}^{r}D^{\sigma}(\mathfrak{S}_{R}, L(X, Y))$, then for each $\xi \in R$ there is a neighborhood V_{ξ} of ξ such that for each *c*-regular $J \in \mathfrak{S}_{R}$ with $\xi \in J \subset V_{\xi}$,

$$\left\|\alpha(J) \cdot x - (D^c)^{\sigma}(\alpha \cdot x)(\xi)|J|\right\| < \epsilon |J|.$$

3) Let δ be the gauge of R such that for each $\xi \in R$, $\delta(\xi) \leq \delta_1(\xi)$ and $B_{\delta(\xi)}(\xi) \subset V_{\xi}$. Hence, for every *c*-regular δ -fine $d = (\xi_i, J_i) \in TD_R$,

$$\sum_{i} \left\| \tilde{f}^{\alpha}(J) - {}^{c}D^{\sigma} \left(\alpha \cdot f(\xi) \right)(\xi) |J_{i}| \right\| \leq \sum_{i} \left\| \tilde{f}^{\alpha}(J_{i}) - \alpha(J_{i}) \cdot f(\xi_{i}) \right\| + \sum_{i} \left\| \alpha(J_{i}) \cdot f(\xi_{i}) - {}^{c}D^{\sigma} \left(\alpha \cdot f(\xi_{i}) \right)(\xi_{i}) |J_{i}| \right\|,$$

where the first summand is smaller than ϵ from 1), and the second summand is smaller than $\epsilon |R|$ from 2), and the first part of the theorem follows.

The second part comes immediately from Lemma 8. \Box PROOF OF THEOREM 4. The proof follows directly from Theorems 10, 12 and 13. \Box

References

- B. Bongiorno and L. Di Piazza, Convergence theorems for generalized Riemann Stieltjes integrals, Real Analysis Exchange 17(1991/92), 339– 362.
- [2] M. Federson, Fórmulas de substituição para as integrais de gauge, MS Thesis, Instituto de Matemática e Estatística, Universidade de São Paulo (1993).
- [3] M. Federson, Substitution formulas for the gauge integrals, Seminário Brasileiro de Análise 37(1993), 389–399.
- [4] C. S. Hönig, The fundamental theorem of calculus for regular multidimensional Banach space valued Kurzweil-Henstock integrals, Seminário Brasileiro de Análise 37(1993), 429–438.
- [5] R. M. McLeod, *The generalized Riemann integral*, Math. Ass. America, Carus Math. Monographs 20(1980), 599–611.