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Abstract

In the present paper we give the Fundamental Theorem of Calculus
for the variational or Henstock vector integrals K

R
R αdf and K

R
R dα f of

multidimensional Banach space-valued functions.

Introduction

In [1, Proposition 3.2], Bongiorno and Di Piazza gave a characterization of the
functions which are Kurzweil-Henstock vector integrals of the form

h(t) =K

∫
[a,t]

f dg

(K
∫

for the Kurzweil integral) considering the one-dimensional real-valued case.
They state that:

a) if g and F belong to ACG∗([a, b]) and f : [a, b] → R is such that F ′(t) =
f(t)g′(t) for m-almost every t ∈ [a, b] (m for the Lebesgue measure), then f
is Kurzweil-Henstock integrable with respect to g (we write f ∈ Hg([a, b])
and for every t ∈ [a, b], F (t) =K

∫
[a,t]

f dg.

And reciprocally,

b) if g ∈ ACG∗([a, b]) and f ∈ Hg([a, b]), then f̃g ∈ ACG∗([a, b]), where
f̃g(t) =K

∫
[a,t]

f dg for each t ∈ [a, b], and there exists (f̃g)′(t) = f(t)g′(t)
for m-almost every t ∈ [a, b].
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In order to prove b), Bongiorno and Di Piazza use the result

K

∫
[a,b]

fg′ =K

∫
[a,b]

f dg (∗)

referring mainly to [5, p. 186]. However, in this reference, or else in [5, p.
186], McLeod affirms that in general

K

∫
[a,b]

f · h =K

∫
[a,b]

f dh̃ , (∗∗)

where h̃(t) =K
∫
[a,t]

h. But (∗∗) does not always hold. In [2, p. 37], a counter-
example for Banach space-valued functions is given and we present it in Ex-
ample 1 below. In the real case it is even possible that

∫
[a,t]

h 6=
∫
[a,t]

dh̃ for
m-almost every t ∈ [a, b]. It suffices to take, for instance, h : [0, 1]→ R defined
by h(t) = 1/q if t = p/q and p ∈ N such that q 6= 0, q/p and p/q, and h(t) = 0
otherwise. For conditions in which (∗∗) holds, the reader may want to consult
[2] or [3].

In the present paper we give the Fundamental Theorem of Calculus for the
variational or Henstock vector integrals K

∫
R αdf and K

∫
R dα f of multidimen-

sional Banach space-valued functions.

1 Basic Terminology

For simplicity of proofs and notation, we consider only the two-dimensional
case.

Let X and Y be Banach spaces and f : R→ X be a function defined in a
compact interval R ⊂ R2 (with sides parallel to the coordinate axes). Given
t, s ∈ R2 with t ≤ s (i.e., ti ≤ si, i = 1, 2), we denote by [t, s] the corresponding
closed interval and we write |[t, s]| = m([t, s]), where m denotes the Lebesgue
measure.

Any finite set of closed nonoverlapping intervals Ji of R such that ∪Ji = R
is called a division of R and denoted by (Ji). A tagged division of R is a pair
d = (ξi, Ji), where (Ji) is a division of R and ξi ∈ Ji for every i. Each ξi is
called the tag of Ji. We denote by TDR the set of all tagged divisions of R.
A tagged partial division d of R is any subset of a tagged division of R and
we write d ∈ TPDR. A gauge of a set E ⊂ R is a function δ : E →]0,∞[ and
d = (ξi, Ji) ∈ TPDR is δ-fine if for each i,

Ji ⊂ Bδ(ξi)(ξi) =
{
t ∈ R ; |t− ξi| < δ(ξi)

}
.
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Let J be a closed interval with sides h and k, h ≤ k. Given 0 < c < 1, J is
said to be c-regular if h/k ≥ c and d = (ξi, Ji) ∈ TPDR is c-regular if each Ji
is c-regular.

Let =R be the set of all closed intervals contained in R. A function F :
=R → X is called additive on intervals (we write F ∈ A(=R, X)) if we have
that F (J) = F (J1) + F (J2) for any intervals J , J1 and J2, with J1 and J2

nonoverlapping and J = J1 ∪ J2.
A function F ∈ A(=R, X) satisfies the regular Strong Lusin Condition on

R (we write F ∈ rSL(=R, X)), if for every ε > 0, every 0 < c < 1 and every
E ⊂ R with m(E) = 0 there is a gauge δ of E such that for every c-regular
δ-fine d = (ξi, Ji) ∈ TDPR with ξi ∈ E for each i, we have that

∑
‖F (Ji)‖ < ε.

Let 0 < c < 1. We say that F ∈ A(=R, X) is c-differentiable at ξ ∈ R
and that f(ξ) is its c-derivative (we write DcF (ξ) = f(ξ)), if for every ε > 0,
there is a neighborhood V of ξ such that for each c-regular J ∈ =R with
ξ ∈ J ⊂ V , we have

∥∥F (J) − f(ξ)|J |
∥∥ < ε|J |. If DcF (ξ) = f(ξ) for every

0 < c < 1, then F is regularly differentiable at ξ ∈ R with f(ξ) being its
regular derivative (we write rDF (ξ) = f(ξ)). We say that F is c-differentiable
at R when F is c-differentiable at ξ ∈ R for every ξ ∈ R, and that F is
regularly differentiable at R when F is regularly differentiable at ξ ∈ R for
every ξ ∈ R. Let L(X,Y ) denote the space of all continuous functions from
X to Y . A function α ∈ A

(
=R, L(X,Y )

)
is weakly c-differentiable at R if, for

every x ∈ X, the function

α · x : J ∈ =R → α(J) · x ∈ Y

is c-differentiable at R and we write α ∈ (Dc)σ
(
=R, L(X,Y )

)
. If there exists

(Dc)σ(α · x)(ξ) for every c and every x, we say that α is weakly regularly
differentiable at ξ ∈ R. We write α ∈ rDσ

(
=R, L(X,Y )

)
, if α is weakly

regularly differentiable at ξ ∈ R, for each ξ ∈ R.
A function f : R → X is regularly Henstock integrable with respect to

α ∈ A
(
=R, L(X,Y )

)
(we write f ∈ rHα(R,X)), if there exists a function

Fα ∈ A(=R, Y ) such that for every ε > 0 and every 0 < c < 1, there is a gauge
δ of R such that for every c-regular δ-fine d = (ξi, Ji) ∈ TDR we have that∑

i

∥∥Fα(Ji)− α(Ji)f(ξi)
∥∥ < ε .

If α(t) = t, then we write simply rH(R,X) and F instead of rHα(R,X) and
Fα respectively.

In an analogous way, a function α : R → L(X,Y ) is regularly Henstock
integrable with respect to f ∈ A(=R, X)

(
we write α ∈ rHf

(
R,L(X,Y )

))
, if

there exists a function Af ∈ A(=R, Y ) such that for every ε > 0 and every
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0 < c < 1, there is a gauge δ of R such that for every c-regular and δ-fine
d = (ξi, Ji) ∈ TDR, we have that∑

i

∥∥Af (Ji)− α(ξi)f(Ji)
∥∥ < ε .

More generally we have: a function α : R→ L(X,Y ) is regularly Kurzweil
integrable with respect to f ∈ A(=R, X)

(
we write α ∈ rKf

(
R,L(X,Y )

))
if

there exists I ∈ Y (we write I = rK
∫
[a,t]

αdf) such that for every ε > 0 and
every 0 < c < 1, there is a gauge δ of R such that for every c-regular and
δ-fine d = (ξi, Ji) ∈ TDR, we have that∥∥∥I −∑

i

α(ξi)f(Ji)
∥∥∥ < ε .

Analogously, a function f : R → X is regularly Kurzweil integrable with
respect to α ∈ A

(
=R, L(X,Y )

)
(we write f ∈ rKα(R,X)), if there exists I ∈ Y

(we write I =rK
∫
[a,t]

dα f) such that for every ε > 0 and every 0 < c < 1, there
is a gauge δ of R such that for every c-regular and δ-fine d = (ξi, Ji) ∈ TDR,
we have that ∥∥∥I −∑

i

α(Ji)f(ξi)
∥∥∥ < ε .

Let R = [a, b]. If α ∈ rKf

(
R,L(X,Y )

)
, then we define α̃f (t) = rK

∫
[a,t]

αdf

for each t ∈ R. And, analogously, given f ∈ rKα(R,X), we define f̃α(t) =
rK
∫
[a,t]

dα f for each t ∈ R. If α(t) = t, then we simply write rK(R,X) and

f̃(t) = rK
∫
[a,t]

f .
We may associate F ∈ A(=R, Y ) with a function from R to Y which we

still denote by F : for R = [a, b] = [a1, b1]× [a2, b2] we write

F (t) = F
(
[a, t]

)
− F

(
[a, (a1, t2)]

)
− F

(
[a, (t1, a2)]

)
+ F

(
[a, a]

)
.

Reciprocally, we may associate a function f : R → Y with a function of
intervals of R which we also denote by f : =R → X. In this case we write

f
(
[t, s]

)
= f(s)− f(t1, s2)− f(t2, s1) + f(t) .

Thus, when f ∈ rHα
(
[a, b], X

)
, then Fα

(
[a, t]

)
= f̃α(t) for each t ∈ [a, b], and

analogously, for α ∈ rKf

(
[a, b], L(X,Y )

)
, we have that Af

(
[a, t]

)
= α̃f (t) for

each t ∈ [a, b], and therefore we can talk about regular Strong Lusin Condition
and regular differentiability of an indefinite integral f̃α or α̃f .
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Remark. When X is of finite dimension, then

rHα
(
[a, b], X

)
= rKα

(
[a, b], X

)
and

rHf

(
[a, b], L(X,Y )

)
= rKf

(
[a, b], L(X,Y )

)
and such spaces are called spaces of regularly Kurzweil-Henstock integrable
functions or spaces of Mawhin integrable functions.

Example 1. Let X = l2([a, b]) and Y = R. Let f : [a, b] → X be defined by
f(t) = et (i.e., et(s) = 1 if s = t, and et(s) = 0 if s 6= t) and let α : [a, b] →
X ′ = L(X,R) be given by α(t) = ẽt, where ẽt(x) = 〈et, x〉, for every x ∈ X.
Then α(t)f(t) = 〈et, et〉 = 1 and therefore

K

∫
[a,b]

α(t)f(t) dt =
∫

[a,b]

dt = b− a ,

where
∫

denotes the Riemann integral. On the other hand, given ε > 0, there
exists δ > 0, say

δ
1
2 <

ε

(b− a)
1
2
,

such that for every d = (ξi, ti) ∈ TD[a,b] with maxi{ti − ti−1} < δ, we have
that

∥∥∥∑
i

f(ξi)(ti − ti−1)
∥∥∥ =

∥∥∥∑
i

eξi
(ti − ti−1)

∥∥∥ =
[∑
i

(ti − ti−1)2
] 1

2
, (1a)

where we have used Bessel’s equality. But,[∑
i

(ti − ti−1)2
] 1

2
< δ

1
2

∑
i

(ti − ti−1)
1
2 =

[
δ(b− a)

] 1
2 < ε . (1b)

Hence (1a) and (1b) imply that f̃ = 0, and so∫
[a,b]

α(t) df̃(t) = 0 .

Now, if [a, b] is a non-degenerate interval, then

0 < b− a = K

∫
[a,b]

α(t)f(t) dt 6=
∫

[a,b]

α(t) df̃(t) = 0 .
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2 Main Results

For the Henstock vector integral rK
∫
[a,t]

αdf we have:

Theorem 1. Let f ∈ rSL(=R, X) and A ∈ rSL(=R, Y ) be both regularly
differentiable on R, and let α : [a, b]→ L(X,Y ) be such that rDA = α · (rDF )
m-almost everywhere on R. Then α ∈ rHf

(
R,L(X,Y )

)
and A = α̃f .

Theorem 2. Let f ∈ rSL(=R, X) be regularly differentiable on R and α ∈
rHg

(
R,L(X,Y )

)
be bounded. Then α̃f ∈ rSL(=R, Y ) and there exists rD(α̃f )

= α · (rDf) m-almost everywhere on R.

And, for the Henstock vector integral rK
∫
[a,t]

dα f we have:

Theorem 3. Let α ∈
(
rSL

(
=R, L(X,Y )

)
∩ rDσ

(
=R, L(X,Y )

))
, let F ∈

rSL(=R, Y ) be regularly differentiable on R and let f : R → X be such that
rDF (t) = rDσ

(
α · f(t)

)
(t) for m-almost every t ∈ R. Then f ∈ rHα(R,X)

and F = f̃α.

And reciprocally:

Theorem 4. If α ∈
(
rSL

(
=R, L(X,Y )

)
∩ rDσ

(
=R, L(X,Y )

))
and f ∈

rHα(R,X) then f̃α ∈ rSL(=R, Y ) and there exists rDf̃α(t) = rDσ
(
α · f(t)

)
(t)

for m-almost every t ∈ R.

3 Proofs

First we prove the results for the Henstock vector integral rK
∫
[a,t]

αdf .

Theorem 5. Let f ∈ rSL(=R, X) and α : R → L(X,Y ) such that α = 0
m-almost everywhere. Then α ∈ rHf

(
R,L(X,Y )

)
and α̃f = 0.

Proof. Let E = {t ∈ R; α(t) 6= 0} and En = {t ∈ E; n − 1 < ‖α(t)‖ ≤ n}
for each n ∈ N. By hypothesis, m(E) = 0. Therefore m(En) = 0 for every
n. Since f ∈ rSL(=R, X), then given n ∈ N, ε > 0 and 0 < c < 1, there is a
gauge δn of En such that for every c-regular δn-fine dn = (ξni , Jni) ∈ TPDR

with ξni ∈ En for every i, we have that
∑
i

∥∥f(Jni)
∥∥ < ε

n·2n .
Let δ be a gauge of R such that if ξ ∈ En then δ(ξ) = δn(ξ), and if

ξ /∈ En then δ(ξ) takes any value in ]0,∞[. Hence, for every c-regular δ-fine
d = (ξi, Ji) ∈ TDR,∑

i

∥∥α(ξi)f(Ji)
∥∥ =

∑
n

∑
ξi∈En

∥∥α(ξi)f(Ji)
∥∥ ≤∑

n

n
∑
ξi∈En

∥∥f(Ji)
∥∥ < ε .
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Corollary. If f ∈ rSL(=R, X), α ∈ rHf

(
R,L(X,Y )

)
and β : [a, b]→ L(X,Y )

with β = α m-almost everywhere, then β ∈ rHf

(
R,L(X,Y )

)
and β̃f = α̃f .

The next example shows us that the hypothesis of f in Theorem 5 is really
needed.

Example 2. Even in the one-dimensional case when the regularity is not
used, we may have that if f does not satisfy the Strong Lusin Condition, then
α may not be Henstock integrable with respect to f . Take, for instance, an
interval [a, b] of the real line with a ≥ 1, and consider the context of Example 1.
Consider arbitrary ξi and [ti−1, ti] ⊂ [a, b] such that ξi ∈ [ti−1, ti]. Then∥∥f(ti)− f(ti−1)

∥∥2 =
∥∥eti − eti−1

∥∥2 = |ti|2 + |ti−1|2 > a2 + a2 > 1 ,

and hence f /∈ SL([a, b], X). We also have that α(ξi)
[
f(ti) − f(ti−1

]
= 0 for

ξi ∈]ti−1, ti[ and α(ξi)
[
f(ti) − f(ti−1)

]
6= 0 otherwise, and therefore α does

not belong to Hf

(
[a, b], L(X,Y )

)
(and neither to Kf

(
[a, b], L(X,Y )

)
).

Proof of Theorem 1.
1) Let E = {t ∈ R; there exists rDA(t) = α(t) · rDF (t)}. Hence, given ε > 0,
0 < c < 1 and ξ ∈ E, there is a neighborhood V1 of ξ such that for every
closed c-regular interval J ⊂ R, with ξ ∈ J ⊂ V1,∥∥A(J)− α(t) ·cDf(t)|J |

∥∥ < ε|J | .

2) By hypothesis, f ∈ rSL(=R, X) and m(R \ E) = 0. Therefore, by the
Corollary after Theorem 5, we may suppose that α(t) = 0 for every t ∈ R \E.
3) Since m(R \ E) = 0 and A ∈ rSL(=R, Y ), there is a gauge δ′ of (R \ E)
such that for every c-regular δ′-fine d = (ξi, Ji) ∈ TPDR with ξi ∈ R \ E,∑
‖A(Ji)‖ < ε.

4) Because f is regularly differentiable on R and hence c-differentiable on R,
there is a neighborhood V2 of ξ such that for every c-regular J ⊂ R, with
ξ ∈ J ⊂ V2, and we have that∥∥α(ξ) · f(J)− α(t) · cDF (t)|J |

∥∥ < ε|J | .

5) Finally, let δ be a gauge of R such that Bδ(ξ)(ξ) ⊂ (V1 ∩V2) for each ξ ∈ E,
and such that if ξ ∈ R \ E, then δ(ξ) ≤ δ′(ξ) and Bδ(ξ)(ξ) ⊂ V2. Hence for
every c-regular δ-fine d = (ξi, Ji) ∈ TDR, it follows that∑

i

∥∥A(Ji)− α(ξi) · f(Ji)
∥∥ ≤
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∑
ξi∈E

∥∥A(Ji)− α(ξi) · f(Ji)
∥∥+

∑
ξi∈R\E

∥∥A(Ji)
∥∥+

∑
ξi∈R\E

∥∥α(ξi) ·
∥∥f(Ji)

∥∥ ,
where the first summand is smaller than

∑
2ε|Ji| = 2ε|R| from 1) and 4). The

second summand is smaller than ε from 3), and the third summand is equal
to zero because we have from 2) that f(ξi) = 0 for each i.

Remark. In Theorem 1, we can require that A ∈ rSL(=R, Y ) is regularly
differentiable m-almost everywhere on R.

Lemma 6 (Saks-Henstock Lemma).
Given f ∈ A(=R, X), α ∈ rHf

(
R,L(X,Y )

)
, let 0 < c < 1, ε > 0, and δ be

the gauge of R from the definition of α ∈ rHf

(
R,L(X,Y )

)
. Then for every

c-regular δ-fine d = (ξi, Ji) ∈ TPDR we have that∑
i

∥∥∥α(ξi) · f(Ji)− rK

∫
Ji

αdf
∥∥∥ < ε .

Proof. The proof follows the standard steps.

Theorem 7. If f ∈ rSL(=R, X) and α ∈ rHf

(
R,L(X,Y )

)
, then α̃f ∈

rSL(=R, Y ).

Proof. Let E ⊂ R be such that m(E) = 0 and let β = αχ(R\E) . Then by the
Corollary after Theorem 5, β ∈ rHf

(
R,L(X,Y )

)
and β̃f = α̃f . Therefore,

given ε > 0 and 0 < c < 1, let δ be the gauge of R from the definition of
β ∈ rHf

(
R,L(X,Y )

)
. Then, from the Saks-Henstock Lemma (Lemma 6), it

follows that for every c-regular δ-fine d = (ξi, Ji) ∈ TPDR, with ξi ∈ E for
each i, we have that∑

i

∥∥α̃f (Ji)
∥∥ =

∑
i

∥∥α̃f (Ji)− β(ξj) · f(Ji)
∥∥ < ε ,

since β̃f = α̃f and β(ξi) = 0 for every i.

Lemma 8. (See [4, Theorem 2.2]). If g ∈ rH(R,X), then there exists rDg̃ = g
m-almost everywhere on R.

Theorem 9. Let f ∈ rSL(=R, X) be regularly differentiable and let α ∈
rHf

(
R,L(X,Y )

)
be bounded. Then the function t ∈ R→ α(t) · rDf(t) ∈ Y is

regularly Henstock integrable with

rK

∫
R

α · rDf = rK

∫
R

αdf .

Besides, there exists rDα̃f = α · rDf m-almost everywhere on R.
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Proof. 1) Given ε > 0, let δ1 be the gauge of R from the definition of
α ∈ rHf

(
R,L(X,Y )

)
.

2) Since f is regularly differentiable, then given 0 < c < 1 and ξ ∈ R, there
is a neighborhood Vξ of ξ such that for each closed c-regular interval J ⊂ R,
with ξ ∈ J ⊂ Vξ, we have that

∥∥f(J)− cDf(ξ)|J |
∥∥ < ε|J | .

3) Let δ be a gauge of R such that for each ξ ∈ R, δ(ξ) ≤ δ1(ξ) and Bδ(ξ)(ξ) ⊂
Vξ. Hence, for every c-regular δ-fine d = (ξi, Ji) ∈ TDR, we have that∑

i

∥∥α̃f (Ji)− α(ξi) · cDf(ξi)|Ji|
∥∥ ≤

∑
i

∥∥α̃f (Ji)− α(ξi) · f(Ji)
∥∥+

∑
i

∥∥α(ξi)
∥∥ · ∥∥f(Ji)− cDf(ξi)|Ji|

∥∥ ,
where the first summand is smaller than ε by 1), the second summand is smaller
than ε‖α‖∞|R| (‖ ‖∞ for the supremum norm) by 2) and the boundedness of
α, and the first part of the theorem holds.

The second part comes immediately from Lemma 8.
Proof of Theorem 2. This comes immediately from Theorems 5, 7 and 9.

Now we treat the Henstock vector integral rK
∫
R
dα f . In general, the proofs

for rK
∫
R
dα f are analogous to those for rK

∫
R
αdf . However, the reader may

want to have a look at Theorem 13 which, unlike Theorem 9, does not need
the boundedness hypothesis of the Henstock vector integrable function. This
fact allows Theorem 4 to be precisely the reciprocal of Theorem 3 (note that
Theorems 1 and 2 are not the reciprocal one of another).

Theorem 10. Let α ∈ rSL
(
=R, L(X,Y )

)
and f : R → X with f = 0 m-

almost everywhere. Then f ∈ rHα(R,X) and f̃α = 0.

Proof. Let E = {t ∈ R; f(t) 6= 0} and En = {t ∈ E; n − 1 < ‖f(t)‖ ≤ n}
for each n ∈ N. By hypothesis, m(E) = 0. Therefore m(En) = 0 for every n.
Since α ∈ rSL

(
=R, L(X,Y )

)
, then for each n, given ε > 0 and 0 < c < 1, there

is a gauge δn of En such that for every c-regular δ-fine dn = (ξni
, Jni

) ∈ TPDR

with ξni
∈ En for each i, we have that

∑
‖α(Jni

)‖ < εn2n.
Let δ be a gauge of R such that if ξ ∈ En then δ(ξ) = δn(ξ), and if

ξ /∈ En then δ(ξ) takes any value in ]0,∞[. Hence for every c-regular δ-fine
d = (ξi, Ji) ∈ TDR,∑

i

∥∥α(Ji) · f(ξi)
∥∥ =

∑
n

∑
ξi∈En

∥∥α(Ji) · f(ξi)
∥∥ ≤∑

n

n
∑
ξi∈En

∥∥α(Ji)
∥∥ < ε .
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Example 3. Even in the one-dimensional case, if α does not satisfy the Strong
Lusin Condition, then f may not be Henstock integrable with respect to α.
In the context of Example1, we have that∥∥α(ti)− α(ti−1)

∥∥ =
∥∥ẽti − ẽti−1

∥∥ =

= sup
‖x‖≤1

{∥∥ẽti(x)− ẽti−1(x)
∥∥} ≥ ∥∥ẽti(eti)− ẽti−1(eti)

∥∥ = 1 ,

for arbitrary ξi and [ti−1, ti] such that ξi ∈ [ti−1, ti] ⊂ [a, b]. Hence α /∈
SL
(
[a, b], L(X,Y )

)
. We also have that

[
α(ti) − α(ti−1)

]
f(ξi) = 0 for ξi ∈

]ti−1, ti[ and
[
α(ti)− α(ti−1)

]
f(ξi) 6= 0 otherwise, and so, f /∈ Hα

(
[a, b], X).

Corollary. Given α ∈ rSL
(
=R, L(X,Y )

)
, f ∈ rHα(R,X) and a function

g : R → X such that g = f m-almost everywhere, then g ∈ rHα(R,X) and
g̃α = f̃α.

Proof of Theorem 3.
1) Let E =

{
t ∈ R; there is rDF (t) = rDσ

(
α · f(t)

)
(t)
}

. Hence, given
0 < c < 1, ε > 0 and ξ ∈ E, there exists a neighborhood V1 of ξ such that for
every c-regular J ∈ =R with ξ ∈ J ⊂ V1,∥∥∥F (J)− (Dc)σ

(
α · f(ξ)

)
(ξ)|J |

∥∥∥ < ε|J | .

2) By hypothesis, α ∈ rSL
(
=R, L(X,Y )

)
and m(R\E) = 0, therefore we may

suppose that f(t) = 0 for every t ∈ R \E by the Corollary after Theorem 10.
3) Since m(R \E) = 0 and F ∈ rSL(=R, Y ), there is a gauge δ′ of R \E such
that for every c-regular δ-fine d = (ξi, Ji) ∈ TPDR with ξi ∈ R \E for each i,
we have that

∑∥∥F (Ji)
∥∥ < ε.

4) Because α ∈ rDσ
(
=R, L(X,Y )

)
, there is a neighborhood V2 of ξ such that

for every c-regular J ∈ =R with ξ ∈ J ⊂ V2,∥∥∥α(J)f(ξ)− (Dc)σ
(
α · f(ξ)

)
(ξ)|J |

∥∥∥ < ε|J | .

5) Finally, let δ be a gauge of R such that Bδ(ξ)(ξ) ⊂ (V1 ∩ V2) for ξ ∈ E, and
such that if ξ ∈ R \ E then δ(ξ) ≤ δ′(ξ) and Bδ(ξ)(ξ) ⊂ V2. Hence, for every
c-regular δ-fine d = (ξi, Ji) ∈ TDR, it follows that∑

i

∥∥F (Ji)− α(Ji)f(ξi)
∥∥ ≤

∑
ξi∈E

∥∥F (Ji)− α(Ji)f(ξi)
∥∥+

∑
ξi∈R\E

∥∥F (Ji)
∥∥+

∑
ξi∈R\E

∥∥α(Ji)
∥∥ · ∥∥f(ξi)

∥∥ ,
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where the first summand is smaller than
∑

2ε|Ji| = 2ε|R| from 1) and 4), the
second summand is smaller than ε from 3), and the third summand is equal
to zero because f(ξi) = 0 from 2).

Lemma 11 (Saks-Henstock Lemma). Given α ∈ A
(
=R, L(X,Y )

)
, f ∈ rHα(R,X),

let 0 < c < 1, ε > 0, and δ be a gauge of R from the definition of f ∈
rHα(R,X). Then for every c-regular δ-fine d = (ξi, Ji) ∈ TPDR, we have
that ∑

i

∥∥∥α(Ji) · f(ξi)− rK

∫
Ji

dα f
∥∥∥ < ε .

Proof. The proof follows the standard steps.

Theorem 12. If α ∈ rSL
(
=R, L(X,Y )

)
and f ∈ rHα(R,X), then f̃α ∈

rSL(=R, Y ).

Proof. Let E ⊂ R be such that m(E) = 0 and let g = fχ(R\E) . Then, by
the Corollary after Theorem 10, g ∈ rHα(R,X) and for each t ∈ R, we have
that g̃α = f̃α. Given 0 < c < 1 and ε > 0, let δ be the gauge of R from
the definition of g ∈ rHα(R,X). Then, from the Saks-Henstock Lemma (see
Lemma 11), it follows that for every c-regular δ-fine d = (ξi, Ji) ∈ TPDR with
ξi ∈ E for each i, we have that∑

i

∥∥f̃α(Ji)
∥∥ =

∑
i

∥∥f̃α(Ji)− α(Ji) · g(ξi)
∥∥ < ε ,

since g̃α = f̃α and g(ξi) = 0 for every i.

Theorem 13. If α ∈ rDσ
(
=R, L(X,Y )

)
and f ∈ rHα(R,X), then the func-

tion g : R→ Y defined by

g(t) = rDσ
(
α · f(t)

)
(t)

is regularly Henstock integrable with rK
∫
R
g = rK

∫
R
dα f . Besides, there exists

rDf̃α m-almost everywhere on R and, in this case,

rDf̃α(t) = rDσ
(
α · f(t)

)
(t) .

Proof. 1) Given ε > 0 and 0 < c < 1, let δ1 be the gauge of R from the
definition of f ∈ rHα(R,X).
2) Since α ∈ rDσ

(
=R, L(X,Y )

)
, then for each ξ ∈ R there is a neighborhood

Vξ of ξ such that for each c-regular J ∈ =R with ξ ∈ J ⊂ Vξ,∥∥α(J) · x− (Dc)σ(α · x)(ξ)|J |
∥∥ < ε|J | .
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3) Let δ be the gauge of R such that for each ξ ∈ R, δ(ξ) ≤ δ1(ξ) and
Bδ(ξ)(ξ) ⊂ Vξ. Hence, for every c-regular δ-fine d = (ξi, Ji) ∈ TDR,∑

i

∥∥∥f̃α(J)− cDσ
(
α · f(ξ)

)
(ξ)|Ji|

∥∥∥ ≤
∑
i

∥∥f̃α(Ji)− α(Ji) · f(ξi)
∥∥+

∑
i

∥∥∥α(Ji) · f(ξi)− cDσ
(
α · f(ξi)

)
(ξi)|Ji|

∥∥∥ ,
where the first summand is smaller than ε from 1), and the second summand
is smaller than ε|R| from 2), and the first part of the theorem follows.

The second part comes immediately from Lemma 8.
Proof of Theorem 4. The proof follows directly from Theorems 10, 12
and 13.
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