1.ª Prova - SMA 380 - Análise

Professor: Alexandre Nolasco de Carvalho		
	QUESTÃO	Nота
	01.ª	
	02.ª	
Nome:	03.ª	
	04.ª	
NÚMERO USP:	05.ª	
	Total	

12.05.2024

Instruções:

- ullet Assinale todas alternativas verdadeiras com V e as falsas com F.
- Em cada questão escolha uma alternativa e justifique (prova ou contra-exemplo).
- Cada questão vale 2.0 pontos, desses 1.0 é o valor da justificativa do ítem escolhido.
- A prova é individual e sem consulta. Boa prova!

1.ª Questão. Escolha 05 itens dentre os 06 itens a seguir. Se $p \in \mathbb{Q}$, escrevemos $p^* = \{q \in \mathbb{Q} : q < p\}$. Se α e β são subconjuntos de \mathbb{Q} , dizemos que $\alpha < \beta$ se $\alpha \subseteq \beta$. Um corte α é um subconjunto de \mathbb{Q} tal que $\varnothing \subseteq \alpha \subseteq \mathbb{Q}$ e

$$p \in \alpha \Rightarrow p^* \cup \{p\} < \alpha$$
.

- (1) Se α é um corte, $p,q \in \mathbb{Q}, p^* \leqslant \alpha$ e $\alpha \leqslant q^*$, então p < q.
- (2) Dados dois cortes α e β com $\alpha < \beta$ existe $r \in \mathbb{Q}$ tal que $\alpha < r^* < \beta$.
- (3) Se α é um corte e $\alpha > 0^*$, pode não haver racional positivo em α .
- (4) Dados dois cortes α e β , exatamente uma das seguintes relações vale: $\alpha < \beta$ ou $\alpha = \beta$ ou $\beta < \alpha$.
- (5) Seja $A \neq \emptyset$ um conjunto de cortes. Se existir um corte L tal que $a \geqslant L$, $\forall a \in A$, então A tem um maior limitante inferior.
- (6) Se α é um corte defina $\beta=\{r\in\mathbb{Q}:r<-s \text{ para algum }s\notin\alpha\}$ então $\alpha+\beta=0^*.$
- ÍTEM
 V OU F

 (1)
 (2)

 (3)
 (4)

 (5)
 (6)

2.ª Questão.

Íтем	VouF
(1)	
(2)	
(3)	
(4)	
(5)	

- (1) Se $\{a_n\}$ é uma seqüência e existe um número ℓ tal que, toda subseqüência de $\{a_n\}$ tem uma subseqüência convergente com limite ℓ , então $\{a_n\}$ é convergente.
- (2) Se uma seqüência $\{a_n\}$ é limitada e $\overline{\lim_{n\to\infty}}a_n\leqslant \underline{\lim_{n\to\infty}}a_n$ então $\{a_n\}$ é convergente.
- (3) Uma sequência $\{a_n\}$ é convergente se, e somente se o conjunto dos valores de aderência é unitário.
- (4) Se $\{a_n\}$ é seqüência limitada então existe uma função $\phi: \mathbb{N} \to \mathbb{N}$ estritamente crescente tal que $\{a_{\phi(n)}\}$ é convergente.
- (5) se $\phi: \mathbb{N} \to \mathbb{N}$ é injetiva e $\{a_n\}$ é convergente então $\{a_{\phi(n)}\}$ é convergente.

3.ª Questão.

ÍTEM	V ou F
(1)	
(2)	
(3)	
(4)	
(5)	

- (1) Seja $\{a_n\}$ uma seqüência limitada defina $c := \overline{\lim} |a_n|^{\frac{1}{n}}$. A série $\sum a_n$ é absolutamente convergente se c < 1 e divergente se c > 1. Se c = 1 nada podemos concluir.
- (2) Seja $\{a_n\}$ uma seqüência. Se a série $\sum |a_n|^2$ é convergente, então $\sum \frac{a_n}{n^r}$ é absolutamente convergente para todo $r > \frac{1}{2}$.
- (3) Se $\{a_n\}$ é uma seqüência limitada de números reais não nulos e existe o limite $c:=\lim\frac{|a_{n+1}|}{|a_n|}$ então, a série $\sum a_n$ é absolutamente convergente se c<1, divergente se c>1 e nada podemos afirmar se c=1.
- (4) Se $\{a_n\}, \{b_n\}$ são seqüências limitadas então

$$\overline{\lim}_{n\to\infty}(a_n+b_n)\leqslant \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n \text{ e } \underline{\lim}_{n\to\infty}(a_n+b_n)\geqslant \underline{\lim}_{n\to\infty}a_n+\underline{\lim}_{n\to\infty}b_n$$

(5) A série $\sum \frac{n^n}{1+n^n} \frac{(xn)^n}{n!}$ é convergente se |x| < e e divergente se |x| > e.

4.ª Questão.

ÍTEM	VouF
(1)	
(2)	
(3)	
(4)	
(5)	

- (1) Seja $\sum a_n$ uma série convergente e b_n uma seqüência **não-decrescente** e limitada. Então $\sum a_n b_n$ é convergente.
- (2) Se $\{a_n\}$ é uma seqüência não-crescente de números reais não-negativos que não é infinitésima então $s_n=\sum_{k=1}^n (-1)^{k+1}a_k$ não é convergente e

$$\overline{\lim}_{n \to \infty} s_n - \underline{\lim}_{n \to \infty} s_n = \lim_{n \to \infty} a_n$$

- (3) Seja $\{a_n\}$ uma seqüência não-crescente. A série $\sum a_n$ é absolutamente convergente se e somente se a série $\sum 3^n a_{3^n}$ é absolutamente convergente.
- (4) A série $\sum_{n=0}^{\infty} \left(1 + \frac{1}{kn}\right)^{-n^2}$ é convergente para todo inteiro positivo k.
- (5) Se $\{a_n\}$ é tal que $\{|a_n|\}$ é uma seqüência decrescente e $\sum_{n=0}^{\infty} a_n$ é absolutamente convergente então $\lim_{n\to\infty} na_n = 0$.

5. a Questão. Limites e Continuidade

- (1) Seja $A \subset \mathbb{R}$ e $f: A \to A$ uma função. Dizemos que $a \in A$ é um ponto fixo de f se f(a) = a. Se I é um intervalo fechado e limitado e $f: I \to I$ é contínua então f tem um ponto fixo em I.
- (2) Se $f:[a,b] \to \mathbb{R}$ é contínua e $k \in \mathbb{R}$ é tal que [k-f(a)].[f(b)-k] > 0, então, existe $\bar{x} \in (a,b)$ tal que $f(\bar{x}) = k$.

(3) Seja $D\subset \mathbb{R}, p$ um ponto de acumulação de D e $f:D\to \mathbb{R}$ uma função
limitada em uma vizinhança de p . Então $\overline{\lim}_{x\to p} f(x)$ e $\underline{\lim}_{x\to p} f(x)$ são valores
de aderência de f e, se ℓ é um valor de aderência de f em p , então
$\underline{\lim}_{x \to p} f(x) \leqslant \ell \leqslant \overline{\lim}_{x \to p} f(x).$

- (4) Seja D um subconjunto de \mathbb{R} , $f: D \to \mathbb{R}$ e $p \in D$. A função f é contínua em p se, e somente se, para toda seqüência $\{x_n\}$ em D com $x_n \stackrel{n \to \infty}{\longrightarrow} p$ existe o limite $\lim_{n \to \infty} f(x_n)$.
- (5) Seja $D \subset \mathbb{R}$, p um ponto de acumulação de D e $f: D \to \mathbb{R}$ uma função. Se o limite $\lim_{x\to p} f(x)$ existe, o conjunto dos valores de aderência de f em p é unitário. A recíproca não vale.

ÍTEM	VouF
(1)	
(2)	
(3)	
(4)	
(5)	