Diferenciabilidade de Funções de BV Aula 26

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

22 de Maio de 2023

Primeiro Semestre de 2023

Medida Exterior

Se I=(a,b) defina $\ell(I)=b-a$. Dado $A\subset\mathbb{R}$ existe uma família contável de intervalos abertos que cobrem A. Seja \mathscr{U}_A a coleção de todas as coberturas contáveis de intervalos abertos de A.

$$m^*(A) = \inf \left\{ \sum \ell(I_n) : \{I_n\} \in \mathscr{U}_A \right\}$$

É claro que $m^*(\varnothing) = 0$, $m^*((a,b)) \leqslant b - a$, $m^*(\{x\}) = 0$, $\forall x \in \mathbb{R}$ e que, se $A \subset B$ $m^*(A) \leqslant m^*(B)$.

Lema

$$m^*[a,b] = m^*(a,b] = m^*[a,b) = m^*(a,b) = b - a.$$

Lema

Se $\{A_n\}$ é uma família contável de subconjuntos de $\mathbb R$ então

$$m^*\left(\bigcup A_n\right)\leqslant \sum m^*(A_n)$$

Corolário

- 1) Se $A \subset \mathbb{R}$ é enumerável, $m^*(A) = 0$.
- 2) Se $\{A_n\}$ é uma família contável de subconjuntos de \mathbb{R} e $m^*(A_n)=0$, $\forall n$ então $m^*(\bigcup_n A_n)=0$

O Lema do Recobrimento de Vitali

Lema (Recobrimento de Vitali)

Seja $E \subset [a,b]$, consequentemente $m^*(E) \leq b-a$. Se \mathscr{I} é uma cobertura de E por intervalos não degenerados e tal que, dados $x \in E$ e $\epsilon > 0$, existe $I \in \mathscr{I}$ tal que $x \in I$ e $\ell(I) < \epsilon$. Então, dado $\epsilon > 0$, existe uma coleção finita e disjunta $\{I_1, \ldots, I_N\} \subset \mathscr{I}$ tal que

$$m^*\left(E\Big\setminus\bigcup_{n=1}^NI_n\right)<\epsilon.$$

Prova: Basta considerar o caso com cada intervalo de \mathscr{I} fechado (caso contrário tomamos o seu fecho). Podemos assumir que $\mathscr{I} \ni I \subset \mathcal{O} = (a-1,b+1)$ e que $I \cap E \neq \varnothing$, $\forall I \in \mathscr{I}$.

Escolhemos uma seqüência $\{I_n\}$ de intervalos disjuntos de \mathscr{I} da seguinte forma: Seja $I_1 \in \mathscr{I}$ qualquer e se I_1, \ldots, I_n já foram escolhidos seja r_n o supremo dos comprimentos dos intervalos de \mathscr{I} que não interseptam nenhum dos I_1, \ldots, I_n .

Claramente $r_n \leq \ell(\mathcal{O})$. Se $E \not\subset \bigcup_{i=1}^n I_i$, encontramos $I_{n+1} \in \mathscr{I}$ disjunto de I_1, \ldots, I_n e tal que $\ell(I_{n+1}) > \frac{1}{2}r_n$.

Asim $\{I_n\}$ é uma seqüência disjunta de intervalos em \mathscr{I} e, como $\bigcup I_n \subset \mathcal{O}$, $\sum \ell(I_n) \leqslant \ell(\mathcal{O})$. Logo, existe $N \in \mathbb{N}$ tal que

$$\sum_{N+1}^{\infty}\ell\left(I_{n}\right)<\frac{\epsilon}{5}$$

Seja

$$R = E \setminus \bigcup_{n=1}^{N} I_n.$$

Mostraremos $m^*(R) < \epsilon$. Se $x \in R$, como $F = \bigcup_{n=1}^N I_n$ é fechado e $x \notin F$, existe I in \mathscr{I} , $x \in I$ e $I \cap F = \varnothing$.

Agora, se $I \cap I_i = \emptyset$ para $i \leqslant \kappa$, temos $\ell(I) \leqslant r_{\kappa} < 2\ell(I_{\kappa+1})$. Como $\lim_{\kappa \to \infty} \ell(I_{\kappa}) = 0$, o intervalo I deve intersectar pelo menos um dos intervalos I_{κ} .

Seja n o menor inteiro tal que $I \cap I_n \neq \emptyset$. Claramente n > N, e $\ell(I) \leqslant r_{n-1} < 2\ell(I_n)$. Como $x \in I$ e $I \cap I_n \neq \emptyset$ a distância de x ao ponto médio de I_n é no máximo $\ell(I) + \frac{1}{2}\ell(I_n) < \frac{5}{2}\ell(I_n)$.

Logo x pertence ao intervalo J_n tendo o mesmo ponto médio que I_n e 5 vezes o comprimento. Desta forma

$$R \subset \bigcup_{N+1}^{\infty} J_n$$
 e $m^*(R) \leqslant \sum_{n=N+1}^{\infty} \ell(J_n) = 5 \sum_{n=N+1}^{\infty} \ell(I_n) < \epsilon._{\square}$

Monotonicidade e Diferenciabilidade

Lema

Se $f:[a,b]\to\mathbb{R}$ é monótona, então f é diferenciável exceto possivelmente em um conjunto $E\subset [a,b]$ com $m^*(E)=0$.

Prova: Faremos apenas o caso f não-descrescente. Considere

$$\frac{\overline{d^{+}}f(x) = \overline{\lim}_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} \quad e \quad \overline{d^{-}}f(x) = \overline{\lim}_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}}{h}}{\frac{\underline{d^{+}}f(x) = \underline{\lim}_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}}{h}} \quad e \quad \underline{\underline{d^{-}}f(x)} = \underline{\lim}_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}}{h}.$$

Provemos que o conjunto dos $x \in [a, b]$ tais que $\underline{d}^-f(x) < \overline{d}^+f(x)$ ou $\overline{d}^-f(x) < \underline{d}^+f(x)$ tem medida exterior nula.

Vamos apenas considerar o conjunto E dos pontos $x \in [a, b]$ para os quais $\overline{d^+}f(x) > \underline{d^-}f(x)$. O conjunto E é a união dos conjuntos

$$E_{u,v} = \left\{ x : \overline{d^+}f(x) > u > v > \underline{d_-}f(x) \right\}$$

para todos os racionais u e v. Logo, é suficiente mostrar que $m^*(E_{u,v})=0$. Seja $s=m^*(E_{u,v})$ and, escolhendo $\epsilon>0$, $E_{u,v}$ está contido em um aberto O com $m^*(O)< s+\epsilon$.

Para cada $x \in E_{u,v}$, podemos escolher h > 0 arbitrariamente pequeno de modo que o intervalo [x - h, x] está contido em O e

$$f(x) - f(x - h) < vh \tag{1}$$

Do Lema de Vitali, escolhemos uma coleção $\{I_1, \ldots, I_N\}$ disjunta desses intervalos cujos interiores cobrem $A \subset E_{u,v}$ com $m^*(A) > s - \epsilon$. Somando (1) para todos estes intervalos

$$\sum_{n=1}^{N} [f(x_n) - f(x_n - h_n)] < v \sum_{n=1}^{N} h_n < v \, m^*(O) < v(s + \epsilon).$$

Agora, cada $y \in A$ e k arbitrariamente pequeno $[y, y + k] \subset I_n$ e

$$f(y+k)-f(y)>uk. (2)$$

O Lema do Recobrimento de Vitali Monotonicidade e Diferenciabilidade Lipschitz Continuidade e Diferenciabilidade Caracterização de funções \mathcal{C}^1

Usando novamente o Lema de Vitali temos uma coleção disjunta $\{J_1, \cdots, J_M\}$ desses intervalos cuja união contém um subconjunto de A com medida exterior maior que $s-2\epsilon$. Somando (2) para todos esses intervalos temos

$$\sum_{i=1}^{M} f(y_i + k_i) - f(y_i) > u \sum_{i=1}^{M} k_i > u(s - 2\epsilon).$$

Cada intervalo J_i está contido em algum intervalo I_n e, como f é crescente, se somamos para todos os i para os quais $J_i \subset I_n$, temos

$$\sum f(y_i + k_i) - f(y_i) \leqslant f(x_n) - f(x_n - h_n)$$

Logo

$$\sum_{n=1}^{N} f(x_n) - f(x_n - h_n) \ge \sum_{i=1}^{M} f(y_i + k_i) - f(y_i)$$

е

$$v(s+\epsilon)>u(s-2\epsilon).$$

Como isto vale para todo $\epsilon>0$, $vs\geq us$. Como u>v, s=0. Isto mostra que

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

existe exceto possivelmente em um conjunto E com $m^*(E)=0$. $_{\square}$

O Lema do Recobrimento de Vitali Monotonicidade e Diferenciabilidade Lipschitz Continuidade e Diferenciabilidade Caracterização de funções C¹

Lipschitz Continuidade e Diferenciabilidade

Corolário

Seja $I \subset \mathbb{R}$ um intervalo aberto e $f: I \to \mathbb{R}$ Lipschitz contínua em I. Então f é diferenciável exceto possivelmente em um conjunto E com $m^*E = 0$.

Corolário

Seja $I \subset \mathbb{R}$ um intervalo aberto e $f: I \to \mathbb{R}$ Lipschitz contínua em I. Então f é diferenciável em um subconjunto denso de I.

Caracterização de funções C^1

Teorema

Seja I um intervalo aberto da reta e $g:I \to \mathbb{R}$ Lipschitz contínua em I. Então g é continuamente diferenciável se, e somente se, para cada $x_0 \in I$,

$$\left|\frac{g(x_0+s+h)-g(x_0+s)}{h}-\frac{g(x_0+h)+g(x_0)}{h}\right| \stackrel{|s|+|h|\to 0}{\to} 0. \quad (3)$$

Prova: Se $f \in C^1(I)$, existem $\theta, \theta' \in (0,1)$ tais que

$$\left|\frac{g(x_0+s+h)-g(x_0+s)}{h}-\frac{g(x_0+h)+g(x_0)}{h}\right|$$

$$=\left|g'(x_0+s+\theta h)-g'(x_0+\theta' h)\right|\stackrel{|s|+|h|\to 0}{\longrightarrow} 0.$$

Agora mostraremos que se a g é diferenciável em todo ponto x_0 de I, (3) implica que g é continuamente diferenciável em I. De fato, de (3), dado $\epsilon > 0$ existe $\delta > 0$ tal que $|x - x_0| < \delta$ e $|h| < \delta$ então

$$\left|\frac{g(x+h)-g(x)}{h}-\frac{g(x_0+h)+g(x_0)}{h}\right|<\frac{\epsilon}{2}.$$

Segue que, para $|x - x_0| < \delta$,

$$|g'(x)-g'(x_0)| = \left|\lim_{h\to 0} \left\{ \frac{g(x+h)-g(x)}{h} - \frac{g(x_0+h)-g(x_0)}{h} \right\} \right| \le \frac{\epsilon}{2} < \epsilon$$

e g' é contínua em x_0 . Para concluir a prova, basta mostrar que g'(x) existe para cada $x \in I$.

O Lema do Recobrimento de Vitali Monotonicidade e Diferenciabilidade Lipschitz Continuidade e Diferenciabilidad Caracterização de funções C¹

Como g Lipschitz contínua, ela é diferenciável em um conjunto denso de pontos. Para cada $x_0 \in I, \epsilon > 0$, existe $\delta > 0$ tal que

$$|g(x+h)-g(x)-g(x_0+h)+g(x_0)| \leq \frac{\epsilon}{4}|h|, |x-x_0|+|h|<\delta$$

e existe $x^* \in (x_0 - \delta, x_0 + \delta)$ tal que $g'(x^*)$ existe. Logo, para $h \neq 0$ suficientemente pequeno

$$\left| \frac{g(x_0 + h) - g(x_0)}{h} - g'(x^*) \right| \leq \frac{\epsilon}{2},$$

$$0 \leq \left\{ \overline{\lim}_{h \to 0} - \underline{\lim}_{h \to 0} \right\} \frac{g(x_0 + h) - g(x_0)}{h} \leq \epsilon.$$

Como ϵ é arbitrário, isto implica que $g'(x_0)$ existe.

